Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model

Li Chang-Liang Chen Zhi-Hui Feng Guang Wang Xiao-Wei Yang Yi-Biao Fei Hong-Ming Sun Fei Liu Yi-Chao

Citation:

Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model

Li Chang-Liang, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Yang Yi-Biao, Fei Hong-Ming, Sun Fei, Liu Yi-Chao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The dynamic tracking and detecting of nanoparticles in micro-nanofluids have always been a challenging and demanding task. In this work, an integrated model of waveguide-concentric ring resonator is proposed based on the waveguide-concentric ring resonator. The change of the fluorescence power intensity outputted by the cavity coupling structure is used to realize the micro-displacement detection of nanoparticles in the micro-nano fluid. Because the ring micro-resonator has the characteristics of high Q and the sensitivity to the surrounding environment, the sensitivity of the device is greatly improved. The finite-difference time domain method is used to study the parameters such as the polarization state of the fluorescence and the distance between the two ring resonators. The double-peak change of the fluorescence output power can be used to detect the displacement of the nanoparticles with high precision. Based on the synchronization of the double-peak changes, the detection can reduce the influence of environmental noise and improve the detection accuracy. The numerical simulation results also confirm that this method can measure the micro-displacement of nanoparticles in nanofluids in a range of 0–1000 nm, providing new directions and ideas.
      Corresponding author: Chen Zhi-Hui, huixu@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175178, 11674239, 61971300, 61905208, 11904255), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province, China (Grant No. YDZJSX2021A013), the Program for the Top Young Talents of Shanxi Province, China, and the Program for the Sanjin Outstanding Talents of China
    [1]

    闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar

    Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar

    [2]

    Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar

    [3]

    Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar

    [4]

    Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar

    [5]

    王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar

    Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar

    [6]

    Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar

    [7]

    Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar

    [8]

    Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar

    [9]

    Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2

    [10]

    Liu Y, Zhang X 2021 Micromachines (Basel) 12 1

    [11]

    Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar

    [12]

    唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar

    Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar

    [13]

    Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar

    [14]

    Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar

    [15]

    Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar

    [16]

    Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar

    [17]

    Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084

    [18]

    Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970

    [19]

    Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar

    [20]

    Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar

    [21]

    Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar

    [22]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [23]

    Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar

    [24]

    Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar

    [25]

    Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar

    [26]

    Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar

    [27]

    Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar

    [28]

    Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar

    [29]

    肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar

    Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar

    [30]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [31]

    Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar

    [32]

    Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar

    [33]

    Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar

    [34]

    Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77

    [35]

    蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar

    Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar

    [36]

    李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar

    Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar

  • 图 1  (a) 波导-同心环形谐振结构模型的三维示意图; (b) 波导-同心环形谐振结构的二维示意图

    Figure 1.  (a) 3D schematic diagram of the waveguide-concentric ring resonant structure model; (b) 2D schematic diagram of the waveguide-concentric ring resonant structure.

    图 2  (a) 不同偏振状态下的功率曲线示意图; (b)—(d) XYZ三个不同偏振态下的量子点在波长为1281 nm处的电场图

    Figure 2.  (a) Schematic diagram of the power curves under different polarization states; (b)–(d) the electric field diagrams of the quantum dots at the wavelength of 1281 nm under three different polarization states of XYZ

    图 3  不同上方波导宽度的荧光输出功率曲线图

    Figure 3.  Fluorescence output power curves of different upper waveguide widths.

    图 4  材料折射率为2.7—3.0的荧光输出功率曲线

    Figure 4.  The fluorescence output power curve of the material with a refractive index of 2.7–3.0.

    图 5  不同环间距的荧光输出功率曲线图

    Figure 5.  Fluorescence output power curves of different ring spacings.

    图 6  (a)—(i) 环间距分别为0, 50, 100, 150, 200, 250, 300, 350, 400 nm的电场分布图(λ = 1281 nm)

    Figure 6.  (a)–(i) Electric field distributions with ring spacings of 0, 50, 100, 150, 200, 250, 300, 350, and 400 nm (λ = 1281 nm).

    图 7  (a), (b) 环间距在350 nm与50 nm时, 荧光量子点的运动范围在0—1000 nm时的荧光输出示意图; (c) 环间距在50 nm时, 波长在1280 nm与1325 nm附近时, 荧光量子点的运动范围在0—1000 nm时的荧光峰值功率曲线图

    Figure 7.  (a), (b) Schematic diagrams of the fluorescence output when the ring spacings are 350 nm and 50 nm, and the motion range of the fluorescent quantum dots is 0–1000 nm; (c) when the ring spacing is 50 nm, the wavelengths are 1280 nm and 1325 nm. Fluorescence peak power curve graph when the motion range of fluorescent quantum dots is in the vicinity of 0–1000 nm

    图 8  荧光量子点的运动范围在0—1000 nm变化时 (a)本工作的荧光功率输出示意图, (b) 波导-单谐振腔的荧光功率输出示意图; (c), (d)波长在1280 nm与1325 nm附近时, 两个结构的荧光输出功率峰值曲线图

    Figure 8.  When the motion range of fluorescent quantum dots varies from 0 to 1000 nm: (a) The schematic diagram of the fluorescence power output of this work; (b) the schematic diagram of the fluorescence power output of the waveguide-single resonator; (c), (d) the fluorescence output power peak curves of the two structures when the wavelength is around 1280 nm and 1325 nm, respectively.

  • [1]

    闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar

    Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar

    [2]

    Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar

    [3]

    Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar

    [4]

    Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar

    [5]

    王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar

    Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar

    [6]

    Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar

    [7]

    Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar

    [8]

    Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar

    [9]

    Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2

    [10]

    Liu Y, Zhang X 2021 Micromachines (Basel) 12 1

    [11]

    Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar

    [12]

    唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar

    Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar

    [13]

    Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar

    [14]

    Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar

    [15]

    Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar

    [16]

    Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar

    [17]

    Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084

    [18]

    Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970

    [19]

    Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar

    [20]

    Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar

    [21]

    Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar

    [22]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [23]

    Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar

    [24]

    Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar

    [25]

    Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar

    [26]

    Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar

    [27]

    Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar

    [28]

    Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar

    [29]

    肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar

    Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar

    [30]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [31]

    Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar

    [32]

    Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar

    [33]

    Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar

    [34]

    Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77

    [35]

    蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar

    Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar

    [36]

    李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar

    Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar

  • [1] Hu Yu-Dong, Song Li-Jun, Wang Chen-Xi, Zhang Pei, Zhou Jing, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Characterization of mode field distribution in optical Fabry-Perot cavity based on nanofiber. Acta Physica Sinica, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [2] Guo Fu-Zhou, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Fei Hong-Ming, Sun Fei, Yang Yi-Biao. Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers. Acta Physica Sinica, 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [3] Wei Chen-Wei, Cao Tun. α-MoO3 based tunable Fabry-Pérot cavity colorimetric biosensor. Acta Physica Sinica, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [4] Qu Li-Jian. Analytical strong-stretching theory of polyelectrolyte brushes loaded with charged nanoparticles. Acta Physica Sinica, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [5] Song Li-Jun, Zhang Peng-Fei, Wang Xin, Wang Chen-Xi, Li Gang, Zhang Tian-Cai. Characteristics and control of fiber ring resonator. Acta Physica Sinica, 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [6] Wang Ya-Ming, Liu Yong-Li, Zhang Lin. Simulations of Ti nanoparticles upon heating and cooling on an atomic scale. Acta Physica Sinica, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [7] Wang Tao, Yang Xu, Liu Xiao-Fei, Lei Fu-Chuan, Gao Ming, Hu Yun-Qi, Long Gui-Lu. Nano-partical sensing based on Raman laser in the whispering gallery mode microresonators. Acta Physica Sinica, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [8] Yin Cheng, Xu Tian, Chen Bing-Yan, Han Qing-Bang. Polarization characteristics of the lattice resonance of metal nanoparticle array. Acta Physica Sinica, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [9] Qian Ze-Yu, Zhang Lin. Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate. Acta Physica Sinica, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [10] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Molecular dynamics investigation of thermal stability of Pt-Au core-shell nanoparticle. Acta Physica Sinica, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [11] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Melting behavior of Au-Pd eutectic nanoparticle: A molecular dynamics study. Acta Physica Sinica, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [12] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [14] Tian Hui-Chen, Liu Li, Wen Yu-Hua. Shape changes and melting characteristics of cubic Pt nanoparticle:A molecular dynamics study. Acta Physica Sinica, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [15] Gu Chun-Yuan, Di Qin-Feng, Shi Li-Yi, Wu Fei, Wang Wen-Chang, Yu Zu-Bin. Experimental investigation of superhydrophobic properties of the surface constructed by nanoparticles. Acta Physica Sinica, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [16] Duan Fang-Li, Luo Jian-Bin, Wen Shi-Zhu. Repulsion mechanism of nanoparticle colliding with monocrystalline silicon surface. Acta Physica Sinica, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [17] Chen Zhi-Qian, Chen Hong, Cheng Nan-Pu, Zheng Rui-Lun. . Acta Physica Sinica, 2002, 51(3): 649-654. doi: 10.7498/aps.51.649
    [18] Xu Bei-Xue, Wu Jin-Lei, Hou Shi-Min, Zhang Xi-Yao, Liu Wei-Min, Xue Zheng-Quan, Wu Quan-De. . Acta Physica Sinica, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] Xu Bei-Xue, Wu Jin-Lei, Shao Qing-Yi, Zhang Zhao-Xiang, Liu Wei-Min, Xue Zeng-Quan, Wu Quan-De. . Acta Physica Sinica, 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
Metrics
  • Abstract views:  4878
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2022
  • Accepted Date:  14 June 2022
  • Available Online:  09 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回