Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-MoO3 based tunable Fabry-Pérot cavity colorimetric biosensor

Wei Chen-Wei Cao Tun

Citation:

α-MoO3 based tunable Fabry-Pérot cavity colorimetric biosensor

Wei Chen-Wei, Cao Tun
PDF
HTML
Get Citation
  • Biosensor has received increasing attention in recent years due to the demand for detecting biological and chemical substances in liquid. In particular, the detection methods based on refractive index have advantages in detection sensitivity. Colorimetric biosensor can transform the change in refractive index of target into the change in color, which has advantages in simple operation, low cost and real-time detection with naked human eyes. In this work, a Fabry-Pérot cavity colorimetric biosensor based on α-MoO3 integrating microfluidic channel is proposed. The α-MoO3 is an emerging natural two-dimensional van der Waals material with anisotropic optical properties due to its unique crystal structure. Theoretical analysis of the feasibility of BK7/Ag/SiO2 as the reflective layers is carried out. And the transmittance spectra of the proposed colorimetric biosensor are calculated by the transfer-matrix method. The obvious color changes can be observed when the microfluidic channel filled with NaCl solutions with different concentrations. The proposed colorimetric biosensor achieves a high detection sensitivity of 600 nm/RIU, which can detect a concentration change of NaCl solution as low as 9‰. The proposed colorimetric biosensor can tune the operating wavelength by simply rotating the device due to the anisotropic optical properties of α-MoO3 to satisfy the color vision of human eyes. Moreover, by tuning the thickness of microfluidic channel, the operating wavelength of colorimetric biosensor can be further shifted. Our approach offers a new direction for developing tunable biosensors with low cost and real-time detection.
      Corresponding author: Cao Tun, caotun1806@dlut.edu.cn
    [1]

    Ferreira M F S, Statkiewicz-Barabach G, Kowal D, Mergo P, Urbanczyk W, Frazao O 2017 Opt. Commun. 394 37Google Scholar

    [2]

    Takahashi T, Hizawa T, Misawa N, Taki M, Sawada K, Takahashi K 2018 J. Micromech. Microeng. 28 054002Google Scholar

    [3]

    Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764Google Scholar

    [4]

    Domachuk P, Littler I C M, Cronin-Golomb M, Eggleton B J 2006 Appl. Phys. Lett. 88 093513Google Scholar

    [5]

    Shao L Y, Zhang A P, Liu W S, Fu H Y, He S L 2007 IEEE Photonics Technol. Lett. 19 30Google Scholar

    [6]

    Qian Y, Zhao Y, Wu Q L, Yang Y 2018 Sens. Actuators, B 260 86Google Scholar

    [7]

    Kamil Y M, Abu Bakar M H, Mustapa M A, Yaacob M H, Abidin N H Z, Syahir A, Lee H J, Mandi M A 2018 Sens. Actuators, B 257 820Google Scholar

    [8]

    Huang J G, Lee C L, Lin H M, Chuang T L, Wang W S, Juang R H, Wang C H, Lee C K, Lin S M, Lin C W 2006 Biosens. Bioelectron. 22 519Google Scholar

    [9]

    Pérot A, Fabry C 1899 Astrophys. J. 9 87Google Scholar

    [10]

    Vaughan M 1989 The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Boca Raton: CRC Press)

    [11]

    Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D 2011 Appl. Phys. Lett. 98 041104Google Scholar

    [12]

    Surdo S, Barillaro G 2015 Opt. Express 23 9192Google Scholar

    [13]

    You K E, Uddin N, Kim T H, Fan Q H, Yoon H J 2018 Sens. Actuators, B 277 62Google Scholar

    [14]

    Uddin N, Shrestha M, Zheng B C, Yoon H J, Wang X Q, Fan Q H 2017 IEEE Sens. J. 17 7348Google Scholar

    [15]

    Yan F, Li L, Wang R X, Tian H, Liu J L, Liu J Q, Tian F J, Zhang J Z 2019 J. Lightwave Technol. 37 1103Google Scholar

    [16]

    Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z, Wang Z, Chen W, Xiang Y J, Zhang W J, Wee A T S 2017 Nano Lett. 17 7593Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [18]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Luo M M, Fan T J, Zhou Y, Zhang H, Mei L 2019 Adv. Funct. Mater. 29 1808306Google Scholar

    [20]

    Liu Z Z, Wells S A, Butun S, Palacios E, Hersam M C, Aydin K 2018 Nanotechnology 29 285202Google Scholar

    [21]

    Liu Z Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [22]

    Song X L, Liu Z H, Xiang Y J, Aydin K 2018 Opt. Express 26 5469Google Scholar

    [23]

    Mao N N, Tang J Y, Xie L M, Wu J X, Han B W, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [24]

    Huang S X, Tatsumi Y, Ling X, Guo H H, Wang Z Q, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [25]

    Al-Abbas S S A, Muhsin M K, Jappor H R 2018 Chem. Phys. Lett. 713 46Google Scholar

    [26]

    Susoma J, Lahtinen J, Kim M, Riikonen J, Lipsanen H 2017 AIP Adv. 7 015014Google Scholar

    [27]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [28]

    Laturia A, Van de Put M L, Vandenberghe W G 2018 Npj 2 D Mater. Appl. 2 1Google Scholar

    [29]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [30]

    Yang H, Jussila H, Autere A, Komsa H P, Ye G J, Chen X H, Hasan T, Sun Z P 2017 ACS Photonics 4 3023Google Scholar

    [31]

    Yang S X, Liu Y, Wu M H, Zhao L D, Lin Z Y, Cheng H C, Wang Y L, Jiang C B, Wei S H, Huang L, Huang Y, Duan X F 2018 Nano Res. 11 554Google Scholar

    [32]

    Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B, Wu Y Q 2016 Adv. Mater. 28 3481Google Scholar

    [33]

    Zheng Z B, Chen J N, Wang Y, Wang X M, Chen X B, Liu P Y, Xu J B, Xie W G, Chen H J, Deng S Z, Xu N S 2018 Adv. Mater. 30 1705381Google Scholar

    [34]

    Ma W L, Alonso-Gonzalez P, Li S J, Nikitin A Y, Yuan J, Martin-Sanchez J, Taboada-Gutierrez J, Amenabar I, Li P N, Velez S, Tollan C, Dai Z G, Zhang Y P, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q L 2018 Nature 562 557Google Scholar

    [35]

    Zheng Z B, Xu N S, Oscurato S L, Tamagnone M, Sun F S, Jiang Y Z, Ke Y L, Chen J N, Huang W C, Wilson W L, Ambrosio A, Deng S Z, Chen H J 2019 Sci. Adv. 5 eaav8690Google Scholar

    [36]

    Tamagnone M, Chaudhary K, Zhu A, Meretska M, Li J, Edgar J H, Ambrosio A, Capasso F 2020 arXiv e-prints: 1905.02177 v2 [physics.optics]

    [37]

    Sreekanth K V, Ouyang Q L, Sreejith S, Zeng S W, Lishu W, Ilker E, Dong W L, ElKabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K T, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [38]

    Zou X J, Zheng G G, Chen Y Y, Xian F L, Xu L H 2019 Opt. Mater. 88 54Google Scholar

    [39]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633Google Scholar

    [40]

    Fernandes A C, Gernaey K V, Kruhne U 2018 Biotechnol. Adv. 36 1341Google Scholar

    [41]

    Prayakarao S, Mendoza B, Devine A, Kyaw C, van Dover R B, Liberman V, Noginov M A 2016 Appl. Phys. Lett. 109 061105Google Scholar

    [42]

    Gholipour B, Piccinotti D, Karvounis A, MacDonald K F, Zheludev N I 2019 Nano Lett. 19 1643Google Scholar

    [43]

    Gosmanov A R, Gosmanova E O, Dillard-Cannon E 2014 Diabet. Metab. Synd. Ob. 7 255

    [44]

    Pascoe K J 2001 Reflectivity and Transmissivity Through Layered, Lossy Media: a User-friendly Approach (US, Ohio: Air Force Inst. of Tech. Wright-PattersonAFB, OH, School of Engineering) AFIT/EN-TR-01-07[Technical Report]

    [45]

    Wolter H 1966 Z. Angew. Phys. 21 565

    [46]

    Tan C Y, Huang Y X 2015 J. Chem. Eng. Data 60 2827Google Scholar

    [47]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [48]

    Wei C W, Dereshgi S A, Song X L, Murthy A, Dravid V P, Cao T, Aydin K 2020 Adv. Opt. Mater. 8 2000088Google Scholar

    [49]

    胡威捷, 汤顺青, 朱正芳 2007 现代颜色技术原理及应用 (北京: 北京理工大学出版社) 第24页

    Tang W J, Tang S Q, Zhu Z F 2007 Principle and Application of Modern Color Technology (Beijing: Beijing Institute of Technology Press) p24 (in Chinese)

  • 图 1  基于α-MoO3的FP谐振腔生物传感器 (a) 3D示意图; (b)剖面示意图. 插图为层状斜方晶α-MoO3结构示意图, 层间由范德瓦尔斯力约束

    Figure 1.  Schematic of FP cavity biosensor based on α-MoO3: (a) 3D view; (b) cross-sectional view. The inset is the illustration of orthorhombic α-MoO3 with layered structure held by van der Waals’ forces.

    图 2  三种结构的透射光谱, 包括单层BK7, BK7/Ag和BK7/Ag/SiO2

    Figure 2.  Transmittance spectrum of three different structure, including single layer BK7, BK7/Ag and BK7/Ag/SiO2.

    图 3  入射光分别为 (a) x偏振光(φ = 0°)和(b) y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(300 nm)的透射光谱图; (c) 入射光分别为x偏振光(φ = 0°)和y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(300 nm)的色彩图

    Figure 3.  Transmittance spectrum of the FP cavity biosensor on (a) x polarization (φ = 0°) and (b) y polarization (φ = 90°) while the micofluidic chamber (300 nm) was filled with NaCl solution in different concentration; (c) colormap for NaCl solution in different concentration filled in micofluidic chamber (300 nm) at x polarization (φ = 0°) and y polarization (φ = 90°).

    图 4  x偏振光下和y偏振光下基于α-MoO3的FP谐振腔生物传感器透射峰波长随折射率变化, 微流腔厚度为300 nm

    Figure 4.  The peak wavelength of transmittance spertrum of FP cavity biosensor based on α-MoO3 on x polarization and y polarization as a function of refractive index, while the thickness of microfluic chamber is 300 nm.

    图 5  入射光分别为 (a) x偏振光(φ = 0°)和(b) y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(550 nm)的透射光谱图; (c) 入射光分别为x偏振光(φ = 0°)和y偏振光(φ = 90°)时纯水(0%)和多种浓度(5%—25%)的NaCl溶液通过FP谐振腔生物传感器的微流腔(550 nm)的色彩图

    Figure 5.  Transmittance spectrum of the FP cavity biosensor on (a) x polarization (φ = 0°) and (b) y polarization (φ = 90°) while the micofluidic chamber (550 nm) was filled with NaCl solution in different concentration; (c) colormap for NaCl solution in different concentration filled in micofluidic chamber (550 nm) at x polarization (φ = 0°) and y polarization (φ = 90°).

    图 6  x偏振光下和y偏振光下基于α-MoO3的FP谐振腔生物传感器透射峰波长随折射率变化, 微流腔厚度为550 nm

    Figure 6.  The peak wavelength of transmittance spertrum of FP cavity biosensor based on α-MoO3 on x polarization and y polarization as a function of refractive index, while the thickness of microfluic chamber is 550 nm.

    表 1  TMM计算FP谐振腔透射光谱所用的参数

    Table 1.  Parameter for simulation of transmittance spectrum of proposed FP cavity biosensor using TMM.

    材料折射率厚度
    基底BK71.515Inf.
    1Agdrude模型[47]30 nm
    2SiO21.4583 nm
    3纯水1.333
    5% NaCl溶液1.3418
    10% NaCl溶液1.3505
    15% NaCl溶液1.3594
    20% NaCl溶液1.3684
    25% NaCl溶液1.3778
    4α-MoO3drude模型[48]100 nm
    5SiO21.4583 nm
    6Agdrude模型[47]30 nm
    基底BK71.515Inf.
    DownLoad: CSV
  • [1]

    Ferreira M F S, Statkiewicz-Barabach G, Kowal D, Mergo P, Urbanczyk W, Frazao O 2017 Opt. Commun. 394 37Google Scholar

    [2]

    Takahashi T, Hizawa T, Misawa N, Taki M, Sawada K, Takahashi K 2018 J. Micromech. Microeng. 28 054002Google Scholar

    [3]

    Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764Google Scholar

    [4]

    Domachuk P, Littler I C M, Cronin-Golomb M, Eggleton B J 2006 Appl. Phys. Lett. 88 093513Google Scholar

    [5]

    Shao L Y, Zhang A P, Liu W S, Fu H Y, He S L 2007 IEEE Photonics Technol. Lett. 19 30Google Scholar

    [6]

    Qian Y, Zhao Y, Wu Q L, Yang Y 2018 Sens. Actuators, B 260 86Google Scholar

    [7]

    Kamil Y M, Abu Bakar M H, Mustapa M A, Yaacob M H, Abidin N H Z, Syahir A, Lee H J, Mandi M A 2018 Sens. Actuators, B 257 820Google Scholar

    [8]

    Huang J G, Lee C L, Lin H M, Chuang T L, Wang W S, Juang R H, Wang C H, Lee C K, Lin S M, Lin C W 2006 Biosens. Bioelectron. 22 519Google Scholar

    [9]

    Pérot A, Fabry C 1899 Astrophys. J. 9 87Google Scholar

    [10]

    Vaughan M 1989 The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Boca Raton: CRC Press)

    [11]

    Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D 2011 Appl. Phys. Lett. 98 041104Google Scholar

    [12]

    Surdo S, Barillaro G 2015 Opt. Express 23 9192Google Scholar

    [13]

    You K E, Uddin N, Kim T H, Fan Q H, Yoon H J 2018 Sens. Actuators, B 277 62Google Scholar

    [14]

    Uddin N, Shrestha M, Zheng B C, Yoon H J, Wang X Q, Fan Q H 2017 IEEE Sens. J. 17 7348Google Scholar

    [15]

    Yan F, Li L, Wang R X, Tian H, Liu J L, Liu J Q, Tian F J, Zhang J Z 2019 J. Lightwave Technol. 37 1103Google Scholar

    [16]

    Wang Q X, Guo J, Ding Z J, Qi D Y, Jiang J Z, Wang Z, Chen W, Xiang Y J, Zhang W J, Wee A T S 2017 Nano Lett. 17 7593Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [18]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Luo M M, Fan T J, Zhou Y, Zhang H, Mei L 2019 Adv. Funct. Mater. 29 1808306Google Scholar

    [20]

    Liu Z Z, Wells S A, Butun S, Palacios E, Hersam M C, Aydin K 2018 Nanotechnology 29 285202Google Scholar

    [21]

    Liu Z Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [22]

    Song X L, Liu Z H, Xiang Y J, Aydin K 2018 Opt. Express 26 5469Google Scholar

    [23]

    Mao N N, Tang J Y, Xie L M, Wu J X, Han B W, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar

    [24]

    Huang S X, Tatsumi Y, Ling X, Guo H H, Wang Z Q, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [25]

    Al-Abbas S S A, Muhsin M K, Jappor H R 2018 Chem. Phys. Lett. 713 46Google Scholar

    [26]

    Susoma J, Lahtinen J, Kim M, Riikonen J, Lipsanen H 2017 AIP Adv. 7 015014Google Scholar

    [27]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [28]

    Laturia A, Van de Put M L, Vandenberghe W G 2018 Npj 2 D Mater. Appl. 2 1Google Scholar

    [29]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [30]

    Yang H, Jussila H, Autere A, Komsa H P, Ye G J, Chen X H, Hasan T, Sun Z P 2017 ACS Photonics 4 3023Google Scholar

    [31]

    Yang S X, Liu Y, Wu M H, Zhao L D, Lin Z Y, Cheng H C, Wang Y L, Jiang C B, Wei S H, Huang L, Huang Y, Duan X F 2018 Nano Res. 11 554Google Scholar

    [32]

    Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B, Wu Y Q 2016 Adv. Mater. 28 3481Google Scholar

    [33]

    Zheng Z B, Chen J N, Wang Y, Wang X M, Chen X B, Liu P Y, Xu J B, Xie W G, Chen H J, Deng S Z, Xu N S 2018 Adv. Mater. 30 1705381Google Scholar

    [34]

    Ma W L, Alonso-Gonzalez P, Li S J, Nikitin A Y, Yuan J, Martin-Sanchez J, Taboada-Gutierrez J, Amenabar I, Li P N, Velez S, Tollan C, Dai Z G, Zhang Y P, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R, Bao Q L 2018 Nature 562 557Google Scholar

    [35]

    Zheng Z B, Xu N S, Oscurato S L, Tamagnone M, Sun F S, Jiang Y Z, Ke Y L, Chen J N, Huang W C, Wilson W L, Ambrosio A, Deng S Z, Chen H J 2019 Sci. Adv. 5 eaav8690Google Scholar

    [36]

    Tamagnone M, Chaudhary K, Zhu A, Meretska M, Li J, Edgar J H, Ambrosio A, Capasso F 2020 arXiv e-prints: 1905.02177 v2 [physics.optics]

    [37]

    Sreekanth K V, Ouyang Q L, Sreejith S, Zeng S W, Lishu W, Ilker E, Dong W L, ElKabbash M, Ting Y, Lim C T, Hinczewski M, Strangi G, Yong K T, Simpson R E, Singh R 2019 Adv. Opt. Mater. 7 1900081Google Scholar

    [38]

    Zou X J, Zheng G G, Chen Y Y, Xian F L, Xu L H 2019 Opt. Mater. 88 54Google Scholar

    [39]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633Google Scholar

    [40]

    Fernandes A C, Gernaey K V, Kruhne U 2018 Biotechnol. Adv. 36 1341Google Scholar

    [41]

    Prayakarao S, Mendoza B, Devine A, Kyaw C, van Dover R B, Liberman V, Noginov M A 2016 Appl. Phys. Lett. 109 061105Google Scholar

    [42]

    Gholipour B, Piccinotti D, Karvounis A, MacDonald K F, Zheludev N I 2019 Nano Lett. 19 1643Google Scholar

    [43]

    Gosmanov A R, Gosmanova E O, Dillard-Cannon E 2014 Diabet. Metab. Synd. Ob. 7 255

    [44]

    Pascoe K J 2001 Reflectivity and Transmissivity Through Layered, Lossy Media: a User-friendly Approach (US, Ohio: Air Force Inst. of Tech. Wright-PattersonAFB, OH, School of Engineering) AFIT/EN-TR-01-07[Technical Report]

    [45]

    Wolter H 1966 Z. Angew. Phys. 21 565

    [46]

    Tan C Y, Huang Y X 2015 J. Chem. Eng. Data 60 2827Google Scholar

    [47]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [48]

    Wei C W, Dereshgi S A, Song X L, Murthy A, Dravid V P, Cao T, Aydin K 2020 Adv. Opt. Mater. 8 2000088Google Scholar

    [49]

    胡威捷, 汤顺青, 朱正芳 2007 现代颜色技术原理及应用 (北京: 北京理工大学出版社) 第24页

    Tang W J, Tang S Q, Zhu Z F 2007 Principle and Application of Modern Color Technology (Beijing: Beijing Institute of Technology Press) p24 (in Chinese)

  • [1] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [2] Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun. Research progress of electromechanical graphene resonant sensors. Acta Physica Sinica, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] Xu Shi-Yao, Wu Yi-Wei, Zhou Yan, Yin Xiang-Yang, Gan Li, Li Ya-Juan, Liu Ming-Yu, Song Hong-Jia, Wang Jin-Bin, Zhong Xiang-Li. PI-SiO2/NiI2 colorimetric humidity sensor with fast response and recovery. Acta Physica Sinica, 2022, 71(2): 020701. doi: 10.7498/aps.71.20211376
    [4] Wang Kun, Duan Gao-Yan, Lang Pei-Lin, Zhao Yu-Fang, Liu Jian-Bin, Song Gang. Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] SiO2/PI-NiI2 colorimetric humidity sensor with fast response and recovery. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211376
    [7] Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211420
    [8] Luo Shi, Wei Da-Peng, Wei Da-Cheng. Applications of two-dimensional materials in bio-sensors. Acta Physica Sinica, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [9] Zhao Xin-Wei, Lü Jun-Peng, Ni Zhen-Hua. Lead halide perovskites Fabry-Pérot resonant cavity laser. Acta Physica Sinica, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [10] Shan Xin, Wang Fang, Hu Kai, Wei Jun-Qing, Lin Xin, Zhao Xuan-Yu, Zhou Bao-Zeng, Zhang Kai-Liang. Recent advances in synthesis and memory computing of large-area α-MoO3. Acta Physica Sinica, 2021, 70(9): 098103. doi: 10.7498/aps.70.20201813
    [11] Xiao Shi-Yan, Jia Da-Gong, Nie An-Ran, Yu Hui, Ji Zhe, Zhang Hong-Xia, Liu Tie-Gen. Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole. Acta Physica Sinica, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [12] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [13] Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An. Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor. Acta Physica Sinica, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [14] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [15] Gui Xin, Hu Chen-Chen, Xie Ying, Li Zheng-Ying. Research on distributed intrinsic Fabry-Perot sensors. Acta Physica Sinica, 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [16] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [17] Lü Jiang-Tao, Tao Wang, Ma Zhen-He, Si Guang-Yuan. Nanoring color filters based on Fabry-Pérot cavities. Acta Physica Sinica, 2013, 62(5): 057804. doi: 10.7498/aps.62.057804
    [18] Wang Zhu, Wang Qi, Wei De-bao, Wang Ling. Relay node placement and addition algorithms in wireless sensor networks. Acta Physica Sinica, 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [19] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [20] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
Metrics
  • Abstract views:  6594
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2020
  • Accepted Date:  13 October 2020
  • Available Online:  07 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回