Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation mechanisms of Ti2AlC and Ti3AlC during solid-state sintering between multilayer graphene and TiAl alloy composite

Wu Ming-Yu Mi Guang-Bao Li Pei-Jie Huang Xu

Citation:

Formation mechanisms of Ti2AlC and Ti3AlC during solid-state sintering between multilayer graphene and TiAl alloy composite

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu
PDF
HTML
Get Citation
  • Ti2AlC and Ti3AlC formed by the reaction between C and TiAl alloy can improve the plasticity and strength of TiAl alloy respectively. Generally, the peritectic reaction of L + TiC→Ti2AlC (Ti3AlC) occurs in the process of liquid-phase sintering, but different formation mechanisms of Ti2AlC and Ti3AlC may exist in the solid-state sintering. In this work, multilayer graphene is employed to fabricate the reaction interface with TiAl alloy under 1100–1350 ℃, which is the common solid-state sintering temperature of TiAl alloy. According to the microstructure characterization and analysis, Ti2AlC and Ti3AlC are verified to contain no TiC. The interface energy values of TiC/TiAl, Ti2AlC/TiAl and Ti3AlC/TiAl are calculated to be about 1.2, 0.87 and 0.39 J·m2, respectively, indicating that Ti2AlC and Ti3AlC can be formed directly without TiC mesophase. Besides, only Ti2AlC is observed to be formed at 1150–1250 ℃, while the interface products at 1250–1350 ℃ change into Ti3AlC with a small amount of Ti2AlC. The mechanism that the sintering temperature affects the formation tendency of Ti2AlC and Ti3AlC can be ascribed to the content of α phase. The TiAl alloy matrix is composed of γ and a few α phases at 1150–1250℃, but almost completely transforms into α phase at 1250–1350 ℃, and the increase in the α content can promote the formation of Ti3AlC. The above results demonstrate the possibility of regulating the relative content of Ti2AlC and Ti3AlC through controlling the sintering temperature, which provides a promising method to improve the plasticity and strength of TiAl alloy.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U2141222) and the Innovation Fund of AECC, China (Grant No. CXPT-2018-36).
    [1]

    Appel F, Clemens H, Fischer F D 2016 Prog. Mater. Sci 81 55Google Scholar

    [2]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Comm 16 364Google Scholar

    [3]

    Yamaguchi M, Inui H, Ito K 2000 Acta Mater 48 307Google Scholar

    [4]

    Gao B, Peng H, Liang Y, Lin J, Chen B 2021 Mater. Sci. Eng. A 881 141059

    [5]

    Kan W, Chen B, Peng H, Liang Y, Lin J 2020 Mater. Lett. 259 126856

    [6]

    Lapin J, Pelachova T, Bajana O 2019 J. Alloys Compd 797 754Google Scholar

    [7]

    Fang H, Chen R, Liu Y, Tan Y Guo J 2019 Intermetallics 115 106630Google Scholar

    [8]

    Gouma P I, Mills M J, Kim Y W 1998 Phil. Mag Lett 78 59Google Scholar

    [9]

    Wu H, Fan G H, Cui X P, Geng L, Yuan F, Pang J C, Wei L S, Huang M 2013 Mater. Sci. Eng. A 585 439Google Scholar

    [10]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2020 J. Aeron. Mater 40 45

    [11]

    Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A 2016 Int. Mater. Rev 62 241

    [12]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2022 Mater. Lett 310 131515Google Scholar

    [13]

    Guo B S, Ni S, Yi J H, Shen R J, Tang Z H, Du Y, Song M 2017 Mater. Sci. Eng. A 698 282Google Scholar

    [14]

    Song Y, Chen Y, Liu W W, Li W L, Wang Y G, Zhao D, Liu X B 2016 Mater. Des 109 256Google Scholar

    [15]

    Chen Y L, Yan M, Sun Y M, Mei B C, Zuo J Q 2009 Ceram. Int 35 1807Google Scholar

    [16]

    Song X J, Cui H Z, Hou N, Wei N, Han Y, Tian J, Song Q 2016 Ceram. Int 42 13586Google Scholar

    [17]

    MSIT, Cornish L, Cacciamani G, Cupid D M, Keyzer J D https://materials.springer.com/msi/docs/sm_msi_r_10_014870_02/ [2021-5-6]

    [18]

    Kim Y W 1992 Acta Metall. Mater 40 1121Google Scholar

    [19]

    王苹, 梅炳初, 洪小林, 朱教群, 周卫兵, 严明, 2007 武汉理工大学学报 29 5

    Wang P, Mei B C, Hong X L, Zhu J Q, Zhou W B, Yan M 2007 J. Wuhan Univ. Technol. 29 5 (in Chinese)

    [20]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib 15 392Google Scholar

    [21]

    Chen Y, Chu M Y, Wang L J, Bao X H, Lin Y, Shen J Y 2011 Phys. Status Solidi A 208 1879Google Scholar

    [22]

    胡庚祥 蔡珣 戎咏华 2013 材料科学基础 (上海: 上海交通大学出版社) 第130页

    Hu G X, Cai X, Rong Y H 2013 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p130 (in Chinese)

    [23]

    Merwe J, Woltersdorf J, Jesser W A 1986 Mater. Sci. Eng 81 1Google Scholar

    [24]

    刘文胜, 黄伯云, 周科朝, 唐建成 2000 材料导报 14 19

    Liu W S, Huang B Y, Zhou K C, Tang J C 2000 Mater. Rep. 14 19 (in Chinese)

    [25]

    Zhang W J, Reddy B V, Deevi S C 2001 Scr. Mater 45 645Google Scholar

    [26]

    Kumpfert J 2001 Adv. Eng. Mater 3 851Google Scholar

    [27]

    Todorova T Z, Gaier M, Zwanziger J W, Plucknett K P 2019 J. Alloy. Compd 789 712Google Scholar

    [28]

    Arusei G K, Chepkoech M, Amolo G O, Wambua N 2020 arXiv: 2011.07102 v1 [cond-mat. mtrl]

    [29]

    Zhang X W, Wang X H, Li F Z, Zhou Y C 2010 J. Am. Ceram. Soc 92 2698

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem 32 213Google Scholar

    [31]

    Болецкая B М1979 Metal Sci. Heat Treatm. Metals 12 37(in Russian)

    [32]

    Vanloo F, Bastin G F 1989 Metall. Meter. Trans. A 20 403

  • 图 1  MLG及TiAl合金粉体形貌 (a) MLG与TiAl粉体混合后的SEM形貌; (b) MLG的初始TEM形貌

    Figure 1.  Morphology of MLG and TiAl powders: (a) SEM morphology of MLG mixed with TiAl powders; (b) original morphology of MLG under TEM.

    图 2  1100 ℃烧结后由未反应的MLG与TiAl基体组成的界面组织

    Figure 2.  Interface structure composed of unreacted MLG and TiAl matrix sintered at 1100 ℃.

    图 3  1150 ℃烧结后MLG/TiAl的界面组织 (a) 部分反应的MLG及形成的Ti2AlC; (b) Ti2AlC的SAED图样

    Figure 3.  Interface structure of MLG/TiAl composite sintered at 1150 ℃: (a) Partly reacted MLG and formed Ti2AlC; (b) SAED pattern of Ti2AlC.

    图 4  1300 ℃烧结后MLG/TiAl的界面组织 (a) 部分反应的MLG及生成Ti3AlC的TEM形貌; (b) Ti3AlC的SAED图样

    Figure 4.  Interface structure of MLG/TiAl composite sintered at 1300 ℃: (a) TEM morphology of partly reacted MLG and formed Ti3AlC; (b) SAED pattern of Ti3AlC.

    图 5  Ti-Al-C 三元相图 (a) 1000 ℃等温截面图[17]; (b) 1250 ℃部分等温截面图[17]; (c) Ti-Al二元相图[18]

    Figure 5.  Ternary diagram of Ti-Al-C: (a) Section at 1000 ℃[17]; (b) partial section at 1250 ℃[17]; (c) Ti-Al binary diagram[18]

    图 6  晶体结构示意图 (a) TiAl; (b) Ti3Al; (c) TiC; (d) Ti3AlC; (e) Ti2AlC

    Figure 6.  Schematic diagram of crystal structure: (a) TiAl; (b) Ti3Al; (c) TiC; (d) Ti3AlC; (e) Ti2AlC.

    图 7  晶面原子排列示意图 (a) TiAl(111); (b) Ti3Al(0001); (c) Ti3AlC(111); (d) Ti2AlC(0001)

    Figure 7.  Schematic diagram of atoms arrayed in crystal plane: (a) TiAl(111); (b) Ti3Al(0001); (c) Ti3AlC(111); (d) Ti2AlC(0001).

    图 8  C与TiAl合金的反应路径 (a) 液相烧结经由TiC发生包晶反应; (b) 1150—1250 ℃固相烧结界面反应形成Ti2AlC; (c) 1250—1350 ℃固相烧结界面反应形成Ti3AlC

    Figure 8.  Reaction paths of C and TiAl alloy: (a) peritectic reaction via TiC during liquid-phase sintering; (b) Ti2AlC formed at 1150—1250 ℃ by solid-state sintering interface reaction; (c) Ti3AlC formed at 1250—1350 ℃ by solid-state sintering interface reaction.

    表 1  Ti-Al-C主要化合物的摩尔生成自由能

    Table 1.  Molar free energy of formation of compounds formed by Ti-Al-C.

    化合物摩尔生成自由能 ${\varDelta _{\text{f} } }G_{\text{m} }$/(kJ·mol–1)
    TiAl30.06522T – 289.37
    TiAl0.02224T – 91.078
    Ti3Al0.01678T – 109.75
    TiC0.01522T – 189.07
    Ti2AlC0.03045T – 387.13
    Ti3AlC0.1208T – 583.45
    DownLoad: CSV

    表 2  C与TiAl的摩尔反应自由能${\varDelta _{\text{r}}}G_{\text{m}}$(kJ·mol–1)

    Table 2.  Molar free energy ${\varDelta _{\text{r}}}G_{\text{m}}$ of reaction between C and TiAl (kJ·mol–1).

    摩尔反应自由能温度/℃
    11501250
    $ \Delta {G_1} $–3.72–3.69
    $ \Delta {G_2} $–5.52–5.50
    $ \Delta {G_3} $–6.88–6.68
    DownLoad: CSV

    表 3  Ti-Al-C化合物晶体结构数据

    Table 3.  Crystal structure data of Ti-Al-C compounds.

    序号晶体空间群晶格常数
    aTiAl${ { {{Pm} }\bar 3 m} }$a = b = 4.0051 Å, c = 4.0707 Å
    bTi3Al${{P63/mmc} }$a = b = 5.764 Å, c = 4.664 Å
    cTiC${ { {{Fm} }\bar 3 m} }$a = b = c = 4.328 Å
    dTi3AlC${ { {{Pm} }\bar 3 m} }$a = b = c = 4.156 Å
    eTi2AlC${{P63/mmc} }$a = b = 3.063 Å, c = 13.668 Å
    DownLoad: CSV

    表 4  TiAl, Ti3Al, TiC, Ti2AlC, Ti3AlC的基本物理参数[24-30]

    Table 4.  Basic physical parameters of TiAl, Ti3Al, TiC, Ti2AlC and Ti3AlC[24-30].

    TiAlTi3AlTiCTi2AlCTi3AlC
    弹性模量
    G/GPa
    705618211583
    泊松比 ν0.230.280.2280.1640.25
    线膨胀系数
    α/10–6
    12—14.512—14.57.749.6210.1
    DownLoad: CSV

    表 5  TiAl/TiC, TiAl/Ti2AlC, α/Ti2AlC, TiAl/Ti3AlC和α/Ti3AlC的界面能

    Table 5.  Interfacial energy of TiAl/TiC, TiAl/Ti2AlC, α/Ti2AlC, TiAl/Ti3AlC and α/Ti3AlC.

    温度/
    $ {\sigma _{{\text{γ /TiC}}}} $/
    (J·m2)
    $ {\sigma _{{\text{γ /H}}}} $/
    (J·m2)
    $ {\sigma _{{\text{α /H}}}} $/
    (J·m2)
    $ {\sigma _{{\text{γ /P}}}} $/
    (J·m2)
    $ {\sigma _{^{{\text{α /P}}}}} $/
    (J·m2)
    11501.2430.8790.8310.3960.308
    12001.2300.8720.8270.3900.303
    12501.2230.8680.8210.3850.288
    13001.2200.8660.8190.3840.288
    13501.2170.8640.8190.3830.287
    DownLoad: CSV

    表 6  MLG与TiAl合金反应生成单C原子层的TiC, Ti2AlC, Ti3AlC的总能量变化

    Table 6.  Total energy change of the interface reaction between MLG and TiAl with the formation of TiC, Ti2AlC, Ti3AlC per C atom layer.

    界面反
    应产物
    反应式1150 ℃总能量
    变化$ \Delta E $/$ {\text{J}} $
    1250 ℃总能量
    变化$ \Delta E $/$ {\text{J}} $
    TiC(1)–2.477S–2.467S
    Ti2AlC(2)–4.641S–4.632S
    Ti3AlC(3)–6.572S–6.392S
    DownLoad: CSV
  • [1]

    Appel F, Clemens H, Fischer F D 2016 Prog. Mater. Sci 81 55Google Scholar

    [2]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Comm 16 364Google Scholar

    [3]

    Yamaguchi M, Inui H, Ito K 2000 Acta Mater 48 307Google Scholar

    [4]

    Gao B, Peng H, Liang Y, Lin J, Chen B 2021 Mater. Sci. Eng. A 881 141059

    [5]

    Kan W, Chen B, Peng H, Liang Y, Lin J 2020 Mater. Lett. 259 126856

    [6]

    Lapin J, Pelachova T, Bajana O 2019 J. Alloys Compd 797 754Google Scholar

    [7]

    Fang H, Chen R, Liu Y, Tan Y Guo J 2019 Intermetallics 115 106630Google Scholar

    [8]

    Gouma P I, Mills M J, Kim Y W 1998 Phil. Mag Lett 78 59Google Scholar

    [9]

    Wu H, Fan G H, Cui X P, Geng L, Yuan F, Pang J C, Wei L S, Huang M 2013 Mater. Sci. Eng. A 585 439Google Scholar

    [10]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2020 J. Aeron. Mater 40 45

    [11]

    Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A 2016 Int. Mater. Rev 62 241

    [12]

    Wu M Y, Mi G B, Li P J, Huang X, Cao C X 2022 Mater. Lett 310 131515Google Scholar

    [13]

    Guo B S, Ni S, Yi J H, Shen R J, Tang Z H, Du Y, Song M 2017 Mater. Sci. Eng. A 698 282Google Scholar

    [14]

    Song Y, Chen Y, Liu W W, Li W L, Wang Y G, Zhao D, Liu X B 2016 Mater. Des 109 256Google Scholar

    [15]

    Chen Y L, Yan M, Sun Y M, Mei B C, Zuo J Q 2009 Ceram. Int 35 1807Google Scholar

    [16]

    Song X J, Cui H Z, Hou N, Wei N, Han Y, Tian J, Song Q 2016 Ceram. Int 42 13586Google Scholar

    [17]

    MSIT, Cornish L, Cacciamani G, Cupid D M, Keyzer J D https://materials.springer.com/msi/docs/sm_msi_r_10_014870_02/ [2021-5-6]

    [18]

    Kim Y W 1992 Acta Metall. Mater 40 1121Google Scholar

    [19]

    王苹, 梅炳初, 洪小林, 朱教群, 周卫兵, 严明, 2007 武汉理工大学学报 29 5

    Wang P, Mei B C, Hong X L, Zhu J Q, Zhou W B, Yan M 2007 J. Wuhan Univ. Technol. 29 5 (in Chinese)

    [20]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib 15 392Google Scholar

    [21]

    Chen Y, Chu M Y, Wang L J, Bao X H, Lin Y, Shen J Y 2011 Phys. Status Solidi A 208 1879Google Scholar

    [22]

    胡庚祥 蔡珣 戎咏华 2013 材料科学基础 (上海: 上海交通大学出版社) 第130页

    Hu G X, Cai X, Rong Y H 2013 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) p130 (in Chinese)

    [23]

    Merwe J, Woltersdorf J, Jesser W A 1986 Mater. Sci. Eng 81 1Google Scholar

    [24]

    刘文胜, 黄伯云, 周科朝, 唐建成 2000 材料导报 14 19

    Liu W S, Huang B Y, Zhou K C, Tang J C 2000 Mater. Rep. 14 19 (in Chinese)

    [25]

    Zhang W J, Reddy B V, Deevi S C 2001 Scr. Mater 45 645Google Scholar

    [26]

    Kumpfert J 2001 Adv. Eng. Mater 3 851Google Scholar

    [27]

    Todorova T Z, Gaier M, Zwanziger J W, Plucknett K P 2019 J. Alloy. Compd 789 712Google Scholar

    [28]

    Arusei G K, Chepkoech M, Amolo G O, Wambua N 2020 arXiv: 2011.07102 v1 [cond-mat. mtrl]

    [29]

    Zhang X W, Wang X H, Li F Z, Zhou Y C 2010 J. Am. Ceram. Soc 92 2698

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem 32 213Google Scholar

    [31]

    Болецкая B М1979 Metal Sci. Heat Treatm. Metals 12 37(in Russian)

    [32]

    Vanloo F, Bastin G F 1989 Metall. Meter. Trans. A 20 403

  • [1] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [2] Wang Li-Na, Chen Li, Sheng Min-Jia, Wang Lei-Lei, Cui Hai-Hang, Zheng Xu, Huang Ming-Hua. Interface evolution mechanism of dual-bubble coalescence driving micromotors in bulk phase. Acta Physica Sinica, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [3] Li Chang, Hou Zhao-Yang, Niu Yuan, Gao Quan-Hua, Wang Zhen, Wang Jin-Guo, Zou Peng-Fei. Simulation of nucleation and evolution process of nuclei during solidification of Ti3Al alloy. Acta Physica Sinica, 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [4] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] Zhang Hong, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhang Yu-He, Liu Peng, Huang Han, Gao Yong-Li. Thickness-dependent electronic structure of the interface of 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene/Ni(100). Acta Physica Sinica, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [6] Qian Ze-Yu, Zhang Lin. Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate. Acta Physica Sinica, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [7] Zhao Ning, Zhong Yi, Huang Ming-Liang, Ma Hai-Tao, Liu Xiao-Ping. Effect of thermomigration on the growth kinetics of Cu6Sn5 at liquid-solid interfaces in Cu/Sn/Cu solder joints. Acta Physica Sinica, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [8] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [9] Liu Lei, Chen Zheng, Wang Yong-Xing. The simulation of precipitate splitting in alloy (Ⅰ): segmentation mechanism. Acta Physica Sinica, 2012, 61(18): 186401. doi: 10.7498/aps.61.186401
    [10] Huang Ming-Liang, Chen Lei-Da, Zhou Shao-Ming, Zhao Ning. Effect of electromigration on interfacial reaction in Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni-P flip chip solder joints. Acta Physica Sinica, 2012, 61(19): 198104. doi: 10.7498/aps.61.198104
    [11] Song Cheng-Fen, Fan Qin-Na, Li Wei, Liu Yong-Li, Zhang Lin. Atomic-scale study of structural change of TiAl alloy film during the cooling process. Acta Physica Sinica, 2011, 60(6): 063104. doi: 10.7498/aps.60.063104
    [12] Hu Xing, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Magnetic and electric properties of Co-doped Bi5Ti3FeO15 multiferroic ceramics. Acta Physica Sinica, 2010, 59(11): 8160-8166. doi: 10.7498/aps.59.8160
    [13] Zhao Da-Wen, Li Jin-Fu. Phase-field modeling of the effect of liquid-solid interface anisotropies on free dendritic growth. Acta Physica Sinica, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [14] Wang Kuang-Fei, Li Bang-Sheng, Ren Ming-Xing, Mi Guo-Fa, Guo Jing-Jie, Fu Heng-Zhi. Numerical simulation of columnar to equiaxial transition during solidification of Ti-44at%Al alloy. Acta Physica Sinica, 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [15] Cao Bo, Bao Liang-Man, Li Gong-Ping, He Shan-Hu. Diffusion and interface reaction of Cu and Si in Cu/SiO2/Si (111) systems. Acta Physica Sinica, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [16] Zhang Jian-Min, Xin Hong, Wei Xiu-Mei. Interface-energy calculation for Ag/Ni twist boundaries with MAEAM. Acta Physica Sinica, 2005, 54(1): 237-241. doi: 10.7498/aps.54.237
    [17] WANG YOU-XIANG, YUE RUI-FENG, CHEN CHUN-HUA. INTERFACIAL REACTION BETWEEN Ti THIN FILM AND AlN CERAMIC. Acta Physica Sinica, 1998, 47(1): 75-82. doi: 10.7498/aps.47.75
    [18] GU QUAN, WANG YOU-XIAGN, CUI YU-DE, CHEN XIN, TAO KUN. INTERFACIAL REACTION OF Ti AND SAPPHIRE. Acta Physica Sinica, 1996, 45(5): 832-843. doi: 10.7498/aps.45.832
    [19] Shen Dian-Hong, Bao Chang-Lin, Lu Hua, Zhang Xiao-Jun, Lin Zhang-Da. . Acta Physica Sinica, 1995, 44(2): 259-265. doi: 10.7498/aps.44.259
    [20] DAI DAO-XUAN, TANG HOU-SHUN, NI YU-HONG, YU XI-TONG. AN INVESTIGATION OF Al/GaAs INTERFACE REACTION BY XPS. Acta Physica Sinica, 1983, 32(10): 1328-1332. doi: 10.7498/aps.32.1328
Metrics
  • Abstract views:  2462
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2022
  • Accepted Date:  28 August 2022
  • Available Online:  22 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回