Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on ultracompact silicon hybrid plasmonic nanofocusing device

Sun Peng-Fei Zhu Ke-Jian Xu Peng-Fei Liu Xing-Peng Sun Tang-You Li Hai-Ou Zhou Zhi-Ping

Citation:

Experimental research on ultracompact silicon hybrid plasmonic nanofocusing device

Sun Peng-Fei, Zhu Ke-Jian, Xu Peng-Fei, Liu Xing-Peng, Sun Tang-You, Li Hai-Ou, Zhou Zhi-Ping
PDF
HTML
Get Citation
  • Silicon-based optoelectronics, using the mature silicon-based microelectronic complementary metal oxide semiconductor (CMOS) manufacturing process, is a large-scale optoelectronic integration platform that has attracted much attention. Surface plasmonic devices have also received extensive attention in the past decades, and especially the silicon-based surface plasmonic nanofocusing devices have become a research hotspot. Typical nanofocusing structures include chirped surface gratings, plasmonic Fresnel zone plate, nano-slit array, tapered metal tips. However, there occur some inevitable problems in these devices, such as the fine structure being too complex to be fabricated and too large transmission loss of metal slot waveguide. In this work, an ultra-compact hybrid surface plasmon nanofocusing device is designed and fabricated by the silicon-based optoelectronic technology, and the nanofocusing performance of the device is also experimentally verified. The hybrid surface plasmon nanofocusing devices are fabricated on a silicon-on-insulator (SOI) wafer by electron beam lithography (EBL) system. The silicon wire waveguides, tapers and the thin silicon strips in the middle of nanofocusing regions are patterned in only one step EBL. The gold layer is formed by a deposition and lift-off process, and then a partially etching process is introduced to make the thickness of the middle thin silicon strips the same as that of the gold layer. With a 1.23-μm-long tapered structure, our nanofocusing devices focus the light field of a silicon strip waveguide into a hybrid surface plasmon waveguide, making non-resonant optical field increase 20 times in the 1550 nm near-infrared band experimentally. The entire insertion loss is about 4.6 dB, and the mode area of the nanofocusing area is about ${\left( {\lambda /n} \right)^2}/640$ which is over 300 times smaller than that of the input silicon waveguide. When the middle slot silicon waveguide width WSi = 120 nm, the insertion loss reaches a minimum value of 2.8 dB. In our design, we adopt the design of silicon-based hybrid plasmonic waveguides. In this design, a layer of material with low refractive index is inserted between the metal layer and the silicon layer to act as a “container” of light field, which makes this silicon-based hybrid plasmonic waveguides have less loss than the traditional metal plasmonic waveguides, and can still maintain high optical field localization. Such silicon-based hybrid surface plasmon nanofocusing devices with simple structures and excellent performances are promising alternatives for future applications in optical field manipulation, optical sensing, nonlinear optical devices, and optical phase-change storage.
      Corresponding author: Zhou Zhi-Ping, zjzhou@pku.edu.cn
    • Funds: Project supported by National Key Research and Development Program of China (2019YFB2205200) and the National Natural Science Foundation of China (Grant Nos. 61775005, 62035001).
    [1]

    Zhou Z, Yin B, Deng Q, Li X, Cui J 2015 Photonics Res. 3 B28Google Scholar

    [2]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [3]

    Dai D, Bowers J E 2014 Nanophotonics 3 283Google Scholar

    [4]

    Dai D, Bauters J, Bowers J E 2012 Light Sci. Appl. 1 e1Google Scholar

    [5]

    Zhou Z, Bai B, Liu L 2019 IEEE J. Sel. Topics Quantum Electron 25 4600413Google Scholar

    [6]

    Bai B, Yang F, Zhou Z 2019 Photonics Res. 7 289Google Scholar

    [7]

    Chen R, Bai B, Yang F, Zhou Z 2020 Optics Lett. 45 803Google Scholar

    [8]

    Chen R, Bai B, Zhou Z 2020 Photonics Res. 8 1197Google Scholar

    [9]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 An Ultra-compact Broadband TE-pass Nanofocusing Structure (Beijing: Optical Society of America)

    [10]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 Low Loss, High Extinction Ratio Plasmonic Spot Size Converter (Beijing: Optical Society of America)

    [11]

    Sun P F, Xu P F, Zhu K J, Zhou Z P 2021 Photonics 8 482Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photonics 8 13Google Scholar

    [13]

    Diaz F J, Li G, de Sterke C M, Kuhlmey B T, Palomba S 2016 J. Opt. Soc. Am. B 33 957Google Scholar

    [14]

    Diaz F J, Hatakeyama T, Rho J, Wang Y, O Brien K, Zhang X, Martijn De Sterke C, Kuhlmey B T, Palomba S 2016 Optics Express 24 545Google Scholar

    [15]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 13103Google Scholar

    [16]

    Fu Y, Zhou W, Lim L E N, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 61124Google Scholar

    [17]

    Mote R G, Yu S F, Ng B K, Zhou W, Lau S P 2008 Optics Express 16 9554Google Scholar

    [18]

    Shi H, Wang C, Du C, Luo X, Dong X, Gao H 2005 Optics Express 13 6815Google Scholar

    [19]

    Min C, Wang P, Jiao X, Deng Y, Ming H 2008 Appl. Phys. B 90 97Google Scholar

    [20]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [21]

    Babadjanyan A J, Margaryan N L, Nerkararyan K V 2000 J. Appl. Phys. 87 3785Google Scholar

    [22]

    Issa N A, Guckenberger R 2007 Plasmonics 2 31Google Scholar

    [23]

    Gramotnev D K, Vogel M W, Stockman M I 2008 J. Appl. Phys. 104 34311Google Scholar

    [24]

    Veronis G, Fan S 2007 Optics Express 15 1211Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Optics Letters 31 2133Google Scholar

    [26]

    Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M 2016 Optica 3 999Google Scholar

  • 图 1  硅基混合表面等离激元光场窄化器件的结构示意图 (a) 三维图; (b) 侧视图; (c) 俯视图; (d) 中间处的截面图

    Figure 1.  Schematic of the proposed silicon hybrid plasmonic nanofocusing device: (a) 3D perspective view; (b) side view; (c) top view; (d) cross-sectional view at the center.

    图 2  硅基混合表面等离激元光场窄化器件(WSi = 120 nm, g = 30 nm, hm = 30 nm)的光场分布图 (a) 整体俯视图; (b)—(e) 对应于x1 = 0 μm, x2 = –0.8 μm, x3 = –1.4 μm, x4 = –2 μm的截面图

    Figure 2.  Optical field distribution of the silicon hybrid plasmonic nanofocusing device (g = 30 nm, WSi = 450 nm, hm = 30 nm): (a) Overall top view; (b)–(e) cross-sectional view corresponding to x1 = 0 μm, x2 = –0.8 μm, x3 = –1.4 μm, x4 = –2 μm.

    图 3  仿真计算的不同波导间隙的硅基混合表面等离激元光场窄化器件的场增强因子

    Figure 3.  Simulated field enhancement factor of the silicon hybrid plasmonic nanofocusing device with different gap width.

    图 4  实验加工的硅基混合表面等离激元光场窄化器件(WSi = 120 nm, g = 30 nm, hm = 30 nm)的(a)光学显微镜图和(b) SEM图(伪彩上色)

    Figure 4.  (a) SEM image (false-colour) and (b) optical microscope image of the fabricated silicon hybrid plasmonic nanofocusing device (WSi = 120 nm, g = 30 nm, hm = 30 nm).

    图 5  (a) 实验加工的硅基混合表面等离激元光场窄化器件的损耗谱线; (b) 不同间隙宽度g对应的损耗

    Figure 5.  (a) Experiment insertion loss spectra of the fabricated silicon hybrid plasmonic nanofocusing device; (b) gap width g dependence of insertion loss.

    图 6  实验加工的不同波导间隙的硅基混合表面等离激元光场窄化器件的场增强因子

    Figure 6.  Field enhancement factor of the fabricated silicon hybrid plasmonic nanofocusing device with different gap width.

  • [1]

    Zhou Z, Yin B, Deng Q, Li X, Cui J 2015 Photonics Res. 3 B28Google Scholar

    [2]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [3]

    Dai D, Bowers J E 2014 Nanophotonics 3 283Google Scholar

    [4]

    Dai D, Bauters J, Bowers J E 2012 Light Sci. Appl. 1 e1Google Scholar

    [5]

    Zhou Z, Bai B, Liu L 2019 IEEE J. Sel. Topics Quantum Electron 25 4600413Google Scholar

    [6]

    Bai B, Yang F, Zhou Z 2019 Photonics Res. 7 289Google Scholar

    [7]

    Chen R, Bai B, Yang F, Zhou Z 2020 Optics Lett. 45 803Google Scholar

    [8]

    Chen R, Bai B, Zhou Z 2020 Photonics Res. 8 1197Google Scholar

    [9]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 An Ultra-compact Broadband TE-pass Nanofocusing Structure (Beijing: Optical Society of America)

    [10]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 Low Loss, High Extinction Ratio Plasmonic Spot Size Converter (Beijing: Optical Society of America)

    [11]

    Sun P F, Xu P F, Zhu K J, Zhou Z P 2021 Photonics 8 482Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photonics 8 13Google Scholar

    [13]

    Diaz F J, Li G, de Sterke C M, Kuhlmey B T, Palomba S 2016 J. Opt. Soc. Am. B 33 957Google Scholar

    [14]

    Diaz F J, Hatakeyama T, Rho J, Wang Y, O Brien K, Zhang X, Martijn De Sterke C, Kuhlmey B T, Palomba S 2016 Optics Express 24 545Google Scholar

    [15]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 13103Google Scholar

    [16]

    Fu Y, Zhou W, Lim L E N, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 61124Google Scholar

    [17]

    Mote R G, Yu S F, Ng B K, Zhou W, Lau S P 2008 Optics Express 16 9554Google Scholar

    [18]

    Shi H, Wang C, Du C, Luo X, Dong X, Gao H 2005 Optics Express 13 6815Google Scholar

    [19]

    Min C, Wang P, Jiao X, Deng Y, Ming H 2008 Appl. Phys. B 90 97Google Scholar

    [20]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [21]

    Babadjanyan A J, Margaryan N L, Nerkararyan K V 2000 J. Appl. Phys. 87 3785Google Scholar

    [22]

    Issa N A, Guckenberger R 2007 Plasmonics 2 31Google Scholar

    [23]

    Gramotnev D K, Vogel M W, Stockman M I 2008 J. Appl. Phys. 104 34311Google Scholar

    [24]

    Veronis G, Fan S 2007 Optics Express 15 1211Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Optics Letters 31 2133Google Scholar

    [26]

    Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M 2016 Optica 3 999Google Scholar

  • [1] Cheng Hong-Yang, Ma Qian-Ru, Xu Hao-Ran, Zhang Hui-Ping, Jin Zuan-Ming, He Wei, Peng Yan. Terahertz emission characterization of silicon based ferromagnetic heterostructures. Acta Physica Sinica, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [2] Zhao Qian-Ru, Wang Xu-Yang, Jia Yan-Xiang, Zhang Yun-Jie, Lu Zhen-Guo, Qian Yi, Zou Jun, Li Yong-Min. Low-loss integrated dynamic polarization controller based on silicon photonics. Acta Physica Sinica, 2024, 73(2): 024205. doi: 10.7498/aps.73.20231214
    [3] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [4] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [5] Yang Meng-Sheng, Yi Tai-Min, Zheng Feng-Cheng, Tang Yong-Jian, Zhang Lin, Du Kai, Li Ning, Zhao Li-Ping, Ke Bo, Xing Pi-Feng. Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Physica Sinica, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [6] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [7] Ren Lun, Li Kui-Ying, Cui Jie-Yuan, Zhao Jie. Photoelectron characteristics of ZnSe quantum dots-sensitized mesoporous La-doped nano-TiO2 film. Acta Physica Sinica, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [8] Xiao Ting-Hui, Yu Yang, Li Zhi-Yuan. Graphene-silicon hybrid photonic integrated circuits. Acta Physica Sinica, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [9] Zhou Pei-Ji, Li Zhi-Yong, Yu Yu-De, Yu Jin-Zhong. Research progress of silicon-based photonic integration. Acta Physica Sinica, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [10] Yu Zhi-Qiang. Electronic structure and photoelectric properties of OsSi2 epitaxially grown on a Si(111) substrate. Acta Physica Sinica, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [11] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [12] Dou Wei-Dong, Song Fei, Huang Han, Bao Shi-Ning, Chen Qiao. UPS study of electronic states of CuPc/Ag(110). Acta Physica Sinica, 2008, 57(1): 628-633. doi: 10.7498/aps.57.628
    [13] Yang Shao-Peng, Zheng Hong-Fang, Li Chun-Lei, Fu Guang-Sheng, Li Xiao-Wei, Xu Chun-Hua, Li Jin-Pei. Investigation of decay characteristics of photoelectrons in nanoparticales of cubic AgBr sensitized by NiS. Acta Physica Sinica, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [14] Lu Yun-Hao, Duan Xiao-Bang, Lü Ping, Zhang Han-Jie, Li Hai-Yang, Bao Shi-Ning, He Pi-Mo. UPS study of tri(β-naphthyl) phosphine overlayer on Ag(110). Acta Physica Sinica, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [15] Xu Peng-Shou, Deng Rui, Pan Hai-Bin, Xu Fa-Qiang, Xie Chang-Kun, Li Yong-Hua, Liu Feng-Qin, K. Yibulaxin. Photoelectron diffraction study on the polarity of GaN surface. Acta Physica Sinica, 2004, 53(4): 1171-1176. doi: 10.7498/aps.53.1171
    [16] ZHOU BING-SUO, TANG GUO-QING, ZHANG GUI-LAN, CHEN WEN-JU. . Acta Physica Sinica, 1995, 44(1): 164-172. doi: 10.7498/aps.44.164
    [17] JI ZHEN-GUO, CHEN LI-DENG, MA XIANG-YANG, YAO HONG-NIAN, QUE DUAN-LIN. . Acta Physica Sinica, 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
    [18] ZHANG XUN-SHENG, DONG FENG, BAO DE-SONG, DU ZHI-QIANG. ARUPS OF THE ADSORPTION OF NITRIC OXIDE ON Cu(llO) SURFACE AT 150K. Acta Physica Sinica, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [19] ZHUANG JIE-JIA. AN INVERSE CHERENKOV FOCUSING LASER ACCELERATOR. Acta Physica Sinica, 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
    [20] MO DANG, PAN SHI-HONG, W. E. SPICER, I. LINDAU. PHOTOELECTRON SPECTROSCOPY FOR VALENCE BAND OF SILVER AND GOLD FILMS ON GALLIUM ARSENIDE. Acta Physica Sinica, 1983, 32(11): 1467-1470. doi: 10.7498/aps.32.1467
Metrics
  • Abstract views:  3455
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2021
  • Accepted Date:  01 June 2022
  • Available Online:  15 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回