Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of N atom content in Fe-Fe3N film with high saturation magnetization and low conductivity

Chen Zhen Lan Ming-Di Li Guo-Jian Sun Shang Liu Shi-Ying Wang Qiang

Citation:

Control of N atom content in Fe-Fe3N film with high saturation magnetization and low conductivity

Chen Zhen, Lan Ming-Di, Li Guo-Jian, Sun Shang, Liu Shi-Ying, Wang Qiang
PDF
HTML
Get Citation
  • Microelectronic devices have a wide range of application prospects. In order to make microelectronic devices that have excellent high-frequency characteristics, developing of soft magnetic films with high saturation magnetization, low coercivity and high resistivity becomes the key to the research. In this work, Fe-Fe3N soft magnetic films with different numbers of N atoms are prepared by radio-frequency atomic source assisted vacuum thermal evaporation. Among them, the RF atom source provides N atoms with higher chemical activity than N molecules, which reduces the formation energy between Fe atoms and N atoms. The vacuum thermal evaporation is beneficial to accurately controlling the growth rate, impurity concentration and composition ratio of multiple compounds of the film at the atomic level. The combination of the two Fe aom and N atom is easier to form nitrides with Fe atoms. Thus in this way the Fe-N films with stable structure are obtained. In the prepared Fe-Fe3N soft magnetic film, the introduction of N atoms makes the surface of the film more uniform, resulting in the increase of density. Compared with Fe, surface roughness is reduced by two times, and the crystallinity is obviously enhanced. Owing to the high saturation magnetization, the content of Fe3N phase is increased by 29% and the (102) orientation of Fe3N increases to 0.64. Therefore the directionality of the magnetic moment arrangement is improved. Comparing with Fe film, the saturation magnetization of the film is increased by 55.2%, reaching 1705.6 emu/cm3. In addition, with the increase of the (102) orientation of Fe3N, a large number of lattice mismatches are produced, which impedes the growth of Fe and Fe3N grains and reduces the grain size and anisotropy of the film. Thus the coercivity of the film decreases. The coercivity (50.3 Oe) is 68.6% lower than that of the Fe film. At the same time, the larger lattice mismatch results in the increase of heterointerface, which promotes the carrier scattering and increases the resistivity of Fe-Fe3N thin film. The resistivity (8.80 μΩ·m) of Fe-Fe3N thin film is 7 times higher than that of Fe thin film. Therefore, this research provides a new method for studying and developing soft magnetic films with high saturation magnetization, low coercivity and high resistivity.
      Corresponding author: Li Guo-Jian, gjli@epm.neu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1600204).
    [1]

    Fan J P, Sun J, Yang Y, Liang R Y, Jiang Y N, Zhang J, Xu X H 2016 J. Alloy. Compd. 662 541Google Scholar

    [2]

    Huang M Q, Wu C, Jiang Y Z, Yan M 2015 J. Alloy. Compd. 644 124Google Scholar

    [3]

    Shokrollahi H, Janghorban K J 2012 Mater. Process. Tech. 189 1Google Scholar

    [4]

    Patelli N, Cugini F, Wang D, Sanna S, Solzi M, Hahn H, Pasquini L 2021 J. Alloy. Compd. 890 161863Google Scholar

    [5]

    Kim D, Kim J, Lee J, Kang M K, Kim S, Park S H, Kim J, Choa Y H, Lim J H 2019 J. Electrochem. Soc. 166 131Google Scholar

    [6]

    Swain M, Kong H, Lee J, Park S, Jeen H 2018 Mater. Res. Express 5 116104Google Scholar

    [7]

    Zhang Y, Turghun M, Huang C J, Wang T, Wang F F, Shi W Z 2018 Acta Metall. Sin. Engl. 31 623Google Scholar

    [8]

    Brajpuriya R, Rajan S, Jani S, Vyas A 2018 Surf. Interface Anal. 51 371Google Scholar

    [9]

    Liu S Y, Ma Y H, Chang L, Li G J, Wang J H, Wang Q 2018 Thin Solid Films 651 1Google Scholar

    [10]

    Li G J, Li M M, Wang J H, Du J J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353Google Scholar

    [11]

    Meng B Y, Yang B, Zhang X X, Zhou B H, Li X P, Yu R H 2020 Mater. Chem. Phys. 242 122478Google Scholar

    [12]

    Adi W A, Yunasfi 2020 Mat. Sci. Eng. B 262 114760Google Scholar

    [13]

    Akdogan N G, Akdogan O 2019 AIP Adv. 9 125139Google Scholar

    [14]

    Naito M, Uehara K, Takeda R, Taniyasu Y, Yamamoto H 2015 J. Cryst. Growth. 415 36Google Scholar

    [15]

    Hattori T, Miyamachi T, Yokoyama T, Komori F 2019 J. Phys. Condens. Matter 31 255001Google Scholar

    [16]

    Fang H A, Zhang R, Liu B, Tao Z K, Wang X F, Xie Z L, Xiu X Q, Zheng Y D 2012 J. Phys. D 45 315002Google Scholar

    [17]

    Zhang Y, Mi W B, Wang X C, Zhang X X 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [18]

    Dirba I, Komissinskiy P, Gutfleisch O, Alff L 2015 J. Appl. Phys. 117 173911Google Scholar

    [19]

    Higashikozono S, Ito K, Takata F, Gushi, Toko K, Suemasu T 2017 J. Cryst. Growth 468 691Google Scholar

    [20]

    Houari A, Matar S F, Belkhir M A, Nakhl M 2007 Phys. Rev. B 75 064420Google Scholar

    [21]

    Telling N D, Jones G A, Grundy P J, Blythe H J 2001 J. Magn. Magn. Mater. 226–230 1659Google Scholar

    [22]

    Mosca D H, Dionisio P H, Schreiner W H, Baumvol T J R, Achete C 1990 J. Appl. Phys. 67 7514Google Scholar

    [23]

    Ji N, Wu Y M, Wang J P 2011 J. Appl. Phys. 109 07B767Google Scholar

    [24]

    Ji N, Osofsky M S, Lauter V, Allard L F, Li X, Jensen K L, Ambaye H, Lara-Curzio E, Wang J P 2011 Phys. Rev. B 84 245310Google Scholar

    [25]

    Ji N A, Allard L F, Lara-Curzio E, Wang J P 2011 Appl. Phys. Lett. 98 092506Google Scholar

    [26]

    Coehoorn R, Daalderop G H O, Jansen H J F 1993 Phys. Rev. B 48 3830Google Scholar

    [27]

    Li Z W, Morrish A H, Ortiz C 2001 J. Mater. Sci. 36 5835Google Scholar

    [28]

    Lu Q H, Xie M L, Han G L, Zheng B, Song Y Z, Qiang J, Wang X Q, Wu Z G, Yan P X, Liu W M 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [29]

    Fang H, Peng X, Li Y, Tao Z K 2019 Mater. Res. Express 6 106443Google Scholar

    [30]

    Zhang L L, Gao S P, Hu Q W, Qi L, Feng L H, Lei L 2017 Mater. Chem. Phys. 197 94Google Scholar

    [31]

    Nadzri N, Ibrahim D, Sompon S 2019 IOP Conference Series Materials Science and Engineering Beijing, China, May 11-13, 2019 p012047

    [32]

    Hung W, Wang X L 2008 Nanoscale Res. Lett. 3 260Google Scholar

    [33]

    Zhang P, Wang X B, Wang W, Lei X, Yin W X, Yang H 2015 RSC Adv. 5 68758Google Scholar

    [34]

    Sundararajan J A, Kaur M, Jiang W L, McCloy J S, Qiang Y 2014 J. Appl. Phys. 115 17B507Google Scholar

    [35]

    Yamaguchi K, Yui T, Ichikawa Y, Yamaki K, Kakeya I, Kadowaki K, Suemasu T 2006 Jpn. J. Appl. Phys. 45 705Google Scholar

    [36]

    Ahmad Z, Cross G B, Vernon M, Gebregiorgis D, Deocampo D, Kozhanov A 2019 Appl. Phys. Lett. 115 223101Google Scholar

    [37]

    Kikuchi T, Somintac A S, Ariyada O, Wada M, Ohachi T 2006 J. Cryst. Growth 292 221Google Scholar

    [38]

    Kuwano K, Nezu A, Matsuura H, Akatsuka H 2016 Jpn. J. Appl. Phys. 55 086101Google Scholar

    [39]

    Agarwal S, Hoex B, Van De Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [40]

    Du J J, Li G J, Wang Q, Ma Y H, Cao Y Z, He J C 2015 Vacuum 121 88Google Scholar

    [41]

    Sato H, Yamashita D, Ban S 2008 J. Ceram. Soc. Jpn. 116 28Google Scholar

    [42]

    Yin W X, Zhang D G, Zhang P, Wang X B, Wang X B, Wang W, Lei X. Shi Z, Yang H 2016 J. Alloy. Compd. 688 828Google Scholar

    [43]

    Cheng Y H, Zheng R K, Liu H, Tian Y, Li Z Q 2009 Phys. Rev. B 80 174412Google Scholar

    [44]

    Lv Z Q, Fu W T, Sun S H, Wang Z H, Fan W, Qv M G 2010 Solid State Sci. 12 404Google Scholar

    [45]

    Wriedt H, Gokcen G, Nafziger R H 1987 Mater. Sci. 8 355Google Scholar

    [46]

    Fan X A, Wu Z Y, Li G Q, Wang J, Xiang Z D, Gan Z H 2016 Mater. Design 89 1251Google Scholar

    [47]

    Yang B, Li X P, Guo R Y, Yu R H 2017 Mater. Design 121 272Google Scholar

    [48]

    Khan W, Wang Q, Jin X, Feng T F 2017 Materials 10 217Google Scholar

    [49]

    杜娇娇, 李国建, 王强, 马永会, 王慧敏, 李萌萌 2015 金属学报 51 799Google Scholar

    Du J J, Li G J, Wang Q, Ma Y H, Wang H M, Li M M 2015 Acta Metall. Sin. 51 799Google Scholar

    [50]

    Aravindh S A, Jaya S M, Valsakumar M C, Sundar C S 2012 Superlattice. Microst. 51 92Google Scholar

    [51]

    Yartseva N S, Yartsev S V, Parlebas J C 2008 Surf. Sci. 602 3388Google Scholar

    [52]

    Sun Y, Gao R W, Han B P, Liu M, Han G B, Feng W C 2007 Prog. Nat. Sci-Mater. 17 131Google Scholar

    [53]

    Ding J, Li Y, Chen L F, Deng C R, Shi Y, Chow Y S, Gang T B 2001 J. Alloys Compd. 314 262Google Scholar

    [54]

    Herzer G 1990 IEEE. Trans. Mag. 26 1397Google Scholar

    [55]

    Kronmvler H, Fischer R, Seeger M, Zern A 1996 J. Phys. D Appl. Phys. 29 2274Google Scholar

    [56]

    Zhao N, Wang W, Lei X, Ye Z T, Chen X D, Ding H, Yang H 2017 J. Mater. Sci. 28 15701Google Scholar

    [57]

    Gupta R, Tayal A, Amir S M, Gupta M, Gupta A, Horisberger M, Stahn J 2011 J. Appl. Phys. 111 103520Google Scholar

    [58]

    Naganuma H, Nakatani R, Endo Y, Kawamura Y, Yamamoto M 2016 Sci. Technol. Adv. Mat. 5 101Google Scholar

    [59]

    Mayadas A F, Shatzkes M 1970 Phys. Rev. B 1 1382Google Scholar

    [60]

    Zhang Z Z, Wu S X, Niu Y, Jiang J, Wang C 2019 J. Mater. Sci. 30 5177Google Scholar

  • 图 1  不同N2流量的N发射光谱(a)以及N原子峰的面积比和峰强度图(b)

    Figure 1.  N emission spectra (a) and the area ratio and peak intensity of N atom peaks at different N2 fluxes (b)

    图 2  不同N2流量下的Fe-Fe3N薄膜XRD图谱

    Figure 2.  XRD patterns of Fe-Fe3N thin films under different N2 flow rates.

    图 3  不同N2流量下Fe-Fe3N薄膜的N 1s (a)和Fe 2p3/2 (b) XPS精细谱、Fe—N键与Fe—Fe键含量比(c)

    Figure 3.  N 1s (a) and Fe 2p3/2 (b) XPS fine spectra, Fe—N bond and Fe—Fe bond content ratio (c) of Fe-Fe3N films under different N2 flow rates.

    图 4  0 sccm薄膜和15 sccm薄膜中Fe-N体系相图[45]和Fe和N原子的百分含量

    Figure 4.  Phase diagram of Fe-N system in 0 sccm film and 15 sccm film[45] and percentage of Fe and N atoms.

    图 5  不同N2流量下Fe-Fe3N薄膜的SEM表面形貌图和AFM三维形貌图 (a) 0 sccm; (b) 10 sccm; (c) 13 sccm; (d) 15 sccm

    Figure 5.  SEM and AFM 3 D morphologies of Fe-Fe3N films under different N2 flow rates: (a) 0 sccm; (b) 10 sccm; (c) 13 sccm; (d) 15 sccm

    图 6  室温时不同N2流量下Fe-Fe3N薄膜面内易轴方向的M-H曲线和0 sccm薄膜、15 sccm薄膜不同方向的M-H曲线

    Figure 6.  M-H curves of the in-plane easy axis direction of Fe-Fe3N films under different N2 flow rates at room temperature and M-H curves of 0 sccm films and 15 sccm films in different directions.

    图 7  Fe-Fe3N薄膜晶体取向示意图

    Figure 7.  Schematic diagram of crystal orientation of Fe-Fe3N films.

    图 8  不同N2流量下Fe-Fe3N薄膜室温的迁移率和载流子浓度

    Figure 8.  Mobility and carrier concentration of Fe-Fe3N films at room temperature under different N2 flow rates.

    图 9  不同N2流量下Fe-Fe3N薄膜室温的饱和磁化强度、矫顽力以及电阻率

    Figure 9.  Room temperature saturation magnetization, coercivity and resistivity of Fe-Fe3N films under different N2 flow rates.

  • [1]

    Fan J P, Sun J, Yang Y, Liang R Y, Jiang Y N, Zhang J, Xu X H 2016 J. Alloy. Compd. 662 541Google Scholar

    [2]

    Huang M Q, Wu C, Jiang Y Z, Yan M 2015 J. Alloy. Compd. 644 124Google Scholar

    [3]

    Shokrollahi H, Janghorban K J 2012 Mater. Process. Tech. 189 1Google Scholar

    [4]

    Patelli N, Cugini F, Wang D, Sanna S, Solzi M, Hahn H, Pasquini L 2021 J. Alloy. Compd. 890 161863Google Scholar

    [5]

    Kim D, Kim J, Lee J, Kang M K, Kim S, Park S H, Kim J, Choa Y H, Lim J H 2019 J. Electrochem. Soc. 166 131Google Scholar

    [6]

    Swain M, Kong H, Lee J, Park S, Jeen H 2018 Mater. Res. Express 5 116104Google Scholar

    [7]

    Zhang Y, Turghun M, Huang C J, Wang T, Wang F F, Shi W Z 2018 Acta Metall. Sin. Engl. 31 623Google Scholar

    [8]

    Brajpuriya R, Rajan S, Jani S, Vyas A 2018 Surf. Interface Anal. 51 371Google Scholar

    [9]

    Liu S Y, Ma Y H, Chang L, Li G J, Wang J H, Wang Q 2018 Thin Solid Films 651 1Google Scholar

    [10]

    Li G J, Li M M, Wang J H, Du J J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353Google Scholar

    [11]

    Meng B Y, Yang B, Zhang X X, Zhou B H, Li X P, Yu R H 2020 Mater. Chem. Phys. 242 122478Google Scholar

    [12]

    Adi W A, Yunasfi 2020 Mat. Sci. Eng. B 262 114760Google Scholar

    [13]

    Akdogan N G, Akdogan O 2019 AIP Adv. 9 125139Google Scholar

    [14]

    Naito M, Uehara K, Takeda R, Taniyasu Y, Yamamoto H 2015 J. Cryst. Growth. 415 36Google Scholar

    [15]

    Hattori T, Miyamachi T, Yokoyama T, Komori F 2019 J. Phys. Condens. Matter 31 255001Google Scholar

    [16]

    Fang H A, Zhang R, Liu B, Tao Z K, Wang X F, Xie Z L, Xiu X Q, Zheng Y D 2012 J. Phys. D 45 315002Google Scholar

    [17]

    Zhang Y, Mi W B, Wang X C, Zhang X X 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [18]

    Dirba I, Komissinskiy P, Gutfleisch O, Alff L 2015 J. Appl. Phys. 117 173911Google Scholar

    [19]

    Higashikozono S, Ito K, Takata F, Gushi, Toko K, Suemasu T 2017 J. Cryst. Growth 468 691Google Scholar

    [20]

    Houari A, Matar S F, Belkhir M A, Nakhl M 2007 Phys. Rev. B 75 064420Google Scholar

    [21]

    Telling N D, Jones G A, Grundy P J, Blythe H J 2001 J. Magn. Magn. Mater. 226–230 1659Google Scholar

    [22]

    Mosca D H, Dionisio P H, Schreiner W H, Baumvol T J R, Achete C 1990 J. Appl. Phys. 67 7514Google Scholar

    [23]

    Ji N, Wu Y M, Wang J P 2011 J. Appl. Phys. 109 07B767Google Scholar

    [24]

    Ji N, Osofsky M S, Lauter V, Allard L F, Li X, Jensen K L, Ambaye H, Lara-Curzio E, Wang J P 2011 Phys. Rev. B 84 245310Google Scholar

    [25]

    Ji N A, Allard L F, Lara-Curzio E, Wang J P 2011 Appl. Phys. Lett. 98 092506Google Scholar

    [26]

    Coehoorn R, Daalderop G H O, Jansen H J F 1993 Phys. Rev. B 48 3830Google Scholar

    [27]

    Li Z W, Morrish A H, Ortiz C 2001 J. Mater. Sci. 36 5835Google Scholar

    [28]

    Lu Q H, Xie M L, Han G L, Zheng B, Song Y Z, Qiang J, Wang X Q, Wu Z G, Yan P X, Liu W M 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [29]

    Fang H, Peng X, Li Y, Tao Z K 2019 Mater. Res. Express 6 106443Google Scholar

    [30]

    Zhang L L, Gao S P, Hu Q W, Qi L, Feng L H, Lei L 2017 Mater. Chem. Phys. 197 94Google Scholar

    [31]

    Nadzri N, Ibrahim D, Sompon S 2019 IOP Conference Series Materials Science and Engineering Beijing, China, May 11-13, 2019 p012047

    [32]

    Hung W, Wang X L 2008 Nanoscale Res. Lett. 3 260Google Scholar

    [33]

    Zhang P, Wang X B, Wang W, Lei X, Yin W X, Yang H 2015 RSC Adv. 5 68758Google Scholar

    [34]

    Sundararajan J A, Kaur M, Jiang W L, McCloy J S, Qiang Y 2014 J. Appl. Phys. 115 17B507Google Scholar

    [35]

    Yamaguchi K, Yui T, Ichikawa Y, Yamaki K, Kakeya I, Kadowaki K, Suemasu T 2006 Jpn. J. Appl. Phys. 45 705Google Scholar

    [36]

    Ahmad Z, Cross G B, Vernon M, Gebregiorgis D, Deocampo D, Kozhanov A 2019 Appl. Phys. Lett. 115 223101Google Scholar

    [37]

    Kikuchi T, Somintac A S, Ariyada O, Wada M, Ohachi T 2006 J. Cryst. Growth 292 221Google Scholar

    [38]

    Kuwano K, Nezu A, Matsuura H, Akatsuka H 2016 Jpn. J. Appl. Phys. 55 086101Google Scholar

    [39]

    Agarwal S, Hoex B, Van De Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [40]

    Du J J, Li G J, Wang Q, Ma Y H, Cao Y Z, He J C 2015 Vacuum 121 88Google Scholar

    [41]

    Sato H, Yamashita D, Ban S 2008 J. Ceram. Soc. Jpn. 116 28Google Scholar

    [42]

    Yin W X, Zhang D G, Zhang P, Wang X B, Wang X B, Wang W, Lei X. Shi Z, Yang H 2016 J. Alloy. Compd. 688 828Google Scholar

    [43]

    Cheng Y H, Zheng R K, Liu H, Tian Y, Li Z Q 2009 Phys. Rev. B 80 174412Google Scholar

    [44]

    Lv Z Q, Fu W T, Sun S H, Wang Z H, Fan W, Qv M G 2010 Solid State Sci. 12 404Google Scholar

    [45]

    Wriedt H, Gokcen G, Nafziger R H 1987 Mater. Sci. 8 355Google Scholar

    [46]

    Fan X A, Wu Z Y, Li G Q, Wang J, Xiang Z D, Gan Z H 2016 Mater. Design 89 1251Google Scholar

    [47]

    Yang B, Li X P, Guo R Y, Yu R H 2017 Mater. Design 121 272Google Scholar

    [48]

    Khan W, Wang Q, Jin X, Feng T F 2017 Materials 10 217Google Scholar

    [49]

    杜娇娇, 李国建, 王强, 马永会, 王慧敏, 李萌萌 2015 金属学报 51 799Google Scholar

    Du J J, Li G J, Wang Q, Ma Y H, Wang H M, Li M M 2015 Acta Metall. Sin. 51 799Google Scholar

    [50]

    Aravindh S A, Jaya S M, Valsakumar M C, Sundar C S 2012 Superlattice. Microst. 51 92Google Scholar

    [51]

    Yartseva N S, Yartsev S V, Parlebas J C 2008 Surf. Sci. 602 3388Google Scholar

    [52]

    Sun Y, Gao R W, Han B P, Liu M, Han G B, Feng W C 2007 Prog. Nat. Sci-Mater. 17 131Google Scholar

    [53]

    Ding J, Li Y, Chen L F, Deng C R, Shi Y, Chow Y S, Gang T B 2001 J. Alloys Compd. 314 262Google Scholar

    [54]

    Herzer G 1990 IEEE. Trans. Mag. 26 1397Google Scholar

    [55]

    Kronmvler H, Fischer R, Seeger M, Zern A 1996 J. Phys. D Appl. Phys. 29 2274Google Scholar

    [56]

    Zhao N, Wang W, Lei X, Ye Z T, Chen X D, Ding H, Yang H 2017 J. Mater. Sci. 28 15701Google Scholar

    [57]

    Gupta R, Tayal A, Amir S M, Gupta M, Gupta A, Horisberger M, Stahn J 2011 J. Appl. Phys. 111 103520Google Scholar

    [58]

    Naganuma H, Nakatani R, Endo Y, Kawamura Y, Yamamoto M 2016 Sci. Technol. Adv. Mat. 5 101Google Scholar

    [59]

    Mayadas A F, Shatzkes M 1970 Phys. Rev. B 1 1382Google Scholar

    [60]

    Zhang Z Z, Wu S X, Niu Y, Jiang J, Wang C 2019 J. Mater. Sci. 30 5177Google Scholar

  • [1] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [2] Li Guo-Jian, Chang Ling, Liu Shi-Ying, Li Meng-Meng, Cui Wei-Bin, Wang Qiang. Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties. Acta Physica Sinica, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [4] Tang Jun, Liu Zhong-Liang, Ren Peng, Yao Tao, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang. Structural characterization of Mn doped SiC magnetic thin films. Acta Physica Sinica, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [5] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li, Cao Guang-Hui. Influence of 3 T magnetic field on the crystal structure of Zn films prepared by vapor deposition. Acta Physica Sinica, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [6] Zhang Hong, Liu Xi, Wang Lan-Xi, Cao Jiang-Wei, Liu Xiao-Xi, Wei Fu-Lin. The effect of substrates on magnetic properties and structure of MnZn ferrite films by alternate deposition. Acta Physica Sinica, 2009, 58(7): 4970-4975. doi: 10.7498/aps.58.4970
    [7] Shang Shu-Zhen, Shao Jian-Da, Fan Zheng-Xiu, Zhao Zhu-Xin. The study of ultraviolet properties of resistant-boat evaporated LaF3 films. Acta Physica Sinica, 2008, 57(3): 1941-1945. doi: 10.7498/aps.57.1941
    [8] Zhan Xiao-Yuan, Zhang Yue, Qi Jun-Jie, Gu You-Song, Zheng Xiao-Lan. The magnetic interactions in FePt nanocomposite film. Acta Physica Sinica, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [9] Zeng Fan-Hao, Zhang Xiao-Zhong. Structure and magnetic properties of Co80Cr20/Ti90Cr10 film prepared by pulsed-laser deposition. Acta Physica Sinica, 2007, 56(1): 522-528. doi: 10.7498/aps.56.522
    [10] Wang Li-Jin, Teng Jiao, Yu Guang-Hua. Study of deposition of super thin Fe film on NiO(001) substrate. Acta Physica Sinica, 2006, 55(8): 4282-4286. doi: 10.7498/aps.55.4282
    [11] Xue Shuang-Xi, Wang Hao, Yang Fu-Jun, Wang Jun-An, Cao Xin, Wang Han-Bin, Gao Yun, Huang Zhong-Bing, Feng Jie, Cheung W. Y., Wong S. P., Zhao Zi-Qiang. Effect of Ag on the structure and magnetic properties of CoPt/Ag nanocomposite films. Acta Physica Sinica, 2005, 54(11): 5395-5399. doi: 10.7498/aps.54.5395
    [12] Li Rui-Peng, Wang Jie, Li Hong-Hong, Guo Yu-Xian, Wang Feng, Hu Zhi-Wei. In-plane anisotropy of iron single-crystal thin film using x-ray magnetic circular dichroism. Acta Physica Sinica, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [13] Wang Hao, Yang Fu-Jun, Xue Shuang-Xi, Cao Xin, Wang Jun-An, Gu Hao-Shuang, Zhao Zi-Qiang. Structure and magnetic properties of CoPt(FePt)-C nanocomposite films. Acta Physica Sinica, 2005, 54(3): 1415-1419. doi: 10.7498/aps.54.1415
    [14] Wang Jie, Li Hong-Hong, Li Rui-Peng, Guo Yu-Xian, Wang Ya-Xin. Research on the effects of thickness of cobalt layers on the orbital and spin moments of Co atoms using x-ray magnetic circular dichroism in absorption. Acta Physica Sinica, 2005, 54(11): 5474-5480. doi: 10.7498/aps.54.5474
    [15] Wu Rui-Xin, Chen Ping. Magnetic Salisbury screen and its high-frequency response. Acta Physica Sinica, 2004, 53(9): 2915-2918. doi: 10.7498/aps.53.2915
    [16] Wang Yi, Han Ru-Qi, Liu Xiao-Yan, Horiguchi Tsuyoshi. Phase transitions of XY model in ultra-thin magnetic film with a triangular latt ice. Acta Physica Sinica, 2003, 52(7): 1776-1782. doi: 10.7498/aps.52.1776
    [17] Peng Zi-Long,  Wang Wei-Ning,  Zhu Tao,  Han Xiu-Feng,  Zhan Wen-Shan. The coherent rotation model in micro-rectangle magnetic film system. Acta Physica Sinica, 2003, 52(11): 2901-2905. doi: 10.7498/aps.52.2991
    [18] Chen Hong, Yan Yu-Li, Mei Hua. Thermodynamic properties of ferromagnetic films in variational cumulant expansi on. Acta Physica Sinica, 2003, 52(10): 2607-2611. doi: 10.7498/aps.52.2607
    [19] ZHONG ZHI-YONG, LAN ZHONG-WEN, ZHANG HUAI-WU, LIU YING-LI, WANG HAO-CAI. COMPUTATION ON GIANT MAGNETO-IMPEDANCE EFFECTS IN FERROMAGNETIC/NON-FERROMAGNETIC/FERROMAGNETIC LAYERED THIN FILMS. Acta Physica Sinica, 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [20] WANG YI-ZHONG, ZHANG MAO-CAI, QIAO YI, WANG JIN, WANG YIN-JUN, SHEN BAO-GEN, HU BO-PING. STRUCTURES AND MAGNETIC PROPERTIES OF ISOTROPIC NANOSTRUCTURED Fe-Pt THIN FILMS. Acta Physica Sinica, 2000, 49(8): 1600-1605. doi: 10.7498/aps.49.1600
Metrics
  • Abstract views:  2685
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2022
  • Accepted Date:  10 January 2023
  • Available Online:  09 February 2023
  • Published Online:  20 March 2023

/

返回文章
返回