Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-throughput calculation of interfacial friction of two-dimensional material

Cui Zi-Chun Yang Mo-Han Ruan Xiao-Peng Fan Xiao-Li Zhou Feng Liu Wei-Min

Citation:

High-throughput calculation of interfacial friction of two-dimensional material

Cui Zi-Chun, Yang Mo-Han, Ruan Xiao-Peng, Fan Xiao-Li, Zhou Feng, Liu Wei-Min
PDF
HTML
Get Citation
  • Friction generally occurs in the relative motion or the contact interface with the trend of relative motion, which impedes the relative motion and produces energy loss. Micro-scale friction is different from the macro-scale friction due to surface effects and other factors. It is necessary to study the friction behavior on a nano-scale. First-principles method is an important way to study and understand friction on a nano-scale. Nevertheless, the constructing of nearly a thousand models and the processing of a large number of data are very time consuming. In this paper, we establish a high-throughput computational program based on the first-principles method to study the interfacial friction of two-dimensional materials. The program realizes modeling, submitting computation tasks, multi-task concurrent calculation, data collection and processing, and image rendering of calculation results. All of these are done in batch automatically, which greatly saves researchers’ time. In this work, this program is used to simulate the normal load by changing the distance between layers and calculate the potential energy surface of BN/BN and graphene/graphene bilayer sliding systems at a series of interlayer distances, as well as the interlayer friction forces and friction coefficients. The study finds that with the decrease of the interlayer distance, the averaged friction force at BN/BN interface increases approximately linearly, and the friction coefficient is in a range of 0.11–0.17. The friction force at graphene/graphene interface first increases, then decreases, and increases again. The friction coefficient reaches a minimum value (0.014) under a load of 12 nN, and these results are consistent with the previous results, verifying the reliability of the calculation program. In addition, we investigate the effect of surface hydrogenation and fluorination on the tribological property of the BN bilayer and find that the friction at the fluorinated BN/BN interface decreases, which is attributed to the smaller charge transfer at interface. Although the high-throughput calculation method realizes the automation and high-throughput calculation of tribological property at solid interface, there are still some limitations. Firstly, the effect of interlaminar bending is not considered in the process of interlaminar relative sliding. Secondly, the essence of the calculation result is static friction, rather than dynamic friction. In addition, the method does not consider the influence of temperature.
      Corresponding author: Fan Xiao-Li, xlfan@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0703800), the Key Project of Natural Science Fund of Shaanxi Province, China (Grant No. 2021JZ-07), and the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars, China.
    [1]

    Holmberg K, Andersson P, Nylund N O, Makela K, Erdemir A 2014 Tribol. Int. 78 94Google Scholar

    [2]

    Carpick R W 2006 Science. 313 184Google Scholar

    [3]

    Zhuang C Q, Liu L 2017 Aip Adv. 7 085103Google Scholar

    [4]

    Berman D, Erdemir A, Sumant A V 2018 Acs Nano. 12 2122Google Scholar

    [5]

    Yuan J H, Yang R, Zhang G Y 2022 Nanotechnology 33 102002Google Scholar

    [6]

    Marchetto D, Feser T, Dienwiebel M 2015 Friction 3 161Google Scholar

    [7]

    Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H 1999 Wear 232 199Google Scholar

    [8]

    Dominguez-Meister S, Rojas T C, Brizuela M, Sanchez-Lopez J C 2017 Sci. Technol. Adv. Mat. 18 122Google Scholar

    [9]

    Zhao X Y, Hamilton M, Sawyer W G, Perry S S 2007 Tribol. Lett. 27 113Google Scholar

    [10]

    Schirmeisen A, Jansen L, Holscher H, Fuchs H 2006 Appl. Phys. Lett. 88 607

    [11]

    Tshiprut Z, Zelner S, Urbakh M 2009 Phys. Rev. Lett. 102 136102Google Scholar

    [12]

    Weiss M, Majchrzycki L, Borkowska E, Cichomski M, Ptak A 2021 Tribol. Int. 162 107133Google Scholar

    [13]

    Luan B Q, Robbins M O 2005 Nature 435 929Google Scholar

    [14]

    Riedo E, Pallaci I, Boragno C, Brune H 2004 J. Phys. Chem. B 108 5324Google Scholar

    [15]

    He X, Liu Z, Ripley L B, Swensen V L, Griffin-Wiesner I J, Gulner B R, McAndrews G R, Wieser R J, Borovsky B P, Wang Q J, Kim S H 2021 Tribol. Int. 155 106780Google Scholar

    [16]

    Ru G L, Qi W H, Tang K W, Wei Y R, Xue T W 2020 Tribol. Int. 151 106483Google Scholar

    [17]

    Ru G L, Qi W H, Wei Y R, Tang K W, Xue T W 2021 Tribol. Int. 159 106974Google Scholar

    [18]

    Dong Y, Perez D, Gao H, Martini A 2012 J. Phys-Condens Mat. 24 265001Google Scholar

    [19]

    Zworner O, Holscher H, Schwarz U D, Wiesendanger R 1998 Appl. Phys. A-Mater. 66 S263Google Scholar

    [20]

    Fajardo O Y, Barel I, Urbakh M 2014 J. Phys-Condens Mat. 26 315002Google Scholar

    [21]

    Mate C M, Mcclelland G M, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 59 1942Google Scholar

    [22]

    Mo Y F, Turner K T, Szlufarska I 2009 Nature 457 1116Google Scholar

    [23]

    An X H, Yao H J, Ma F, Lu Z B 2015 Rsc Adv. 5 106239Google Scholar

    [24]

    Sun J H, Zhang Y N, Lu Z B, Li Q Y, Xue Q J, Du S Y, Pu J B, Wang L P 2018 J. Phys. Chem. Lett. 9 2554Google Scholar

    [25]

    Cheng Z W, Sun J H, Zhang B Z, Lu Z B, Ma F, Zhang G A, Xue Q J 2020 J. Phys. Chem. Lett. 11 5815Google Scholar

    [26]

    Wang K B, Li H, Guo Y F 2021 Materials 14 4717Google Scholar

    [27]

    Wang J J, Wang F, Li J M, Wang S J, Song Y L, Sun Q, Jia Y 2012 Tribol. Lett. 48 255Google Scholar

    [28]

    Gao W, Tkatchenko A 2015 Phys. Rev. Lett. 114 096101Google Scholar

    [29]

    Zhuang C Q, Liu L 2015 J. Appl. Phys. 117 114302Google Scholar

    [30]

    Ko J H, Kwon S, Byun I S, Choi J S, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137Google Scholar

    [31]

    Qu C Y, Wang K Q, Wang J, Gongyang Y J, Carpick R W, Urbakh M, Zheng Q S 2020 Phys. Rev. Lett. 125 12

    [32]

    Ruan X, Shi J, Wang X, Wang W Y, Fan X, Zhou F 2021 ACS Appl. Mater. Interfaces 13 40901Google Scholar

    [33]

    Liao M Z, Nicolini P, Du L J, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47Google Scholar

    [34]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [35]

    Filippov A E, Dienwiebel M, Frenken J W M, Klafter J, Urbakh M 2008 Phys. Rev. Lett. 100 046102Google Scholar

    [36]

    Zhang J, Bai Y, An L, Zhang B, Zhang J, Yu Y, Wang C M 2019 J. Appl. Phys. 126 035104Google Scholar

    [37]

    Cheng Z W, An X H, Wang J J, Zhang B Z, Lu Z B, Zhang G G 2020 Tribol. Int. 141 105961Google Scholar

    [38]

    Wang J J, Li J M, Fang L L, Sun Q, Jia Y 2014 Tribol. Lett. 55 405Google Scholar

    [39]

    Restuccia P, Levita G, Wolloch M, Losi G, Fatti G, Ferrario M, Righi M C 2018 Comp. Mater. Sci. 154 517Google Scholar

    [40]

    Gonze X, Ghosez P, Godby R W 1997 Phys. Rev. Lett. 78 294Google Scholar

    [41]

    Kresse G 1995 J. Non-Cryst. Solids 193 222

    [42]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [43]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [44]

    Weinan E, Ren W Q, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301

    [45]

    Zhong W, Tomanek D 1990 Phys. Rev. Lett. 64 3054Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [48]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [49]

    Marom N, Bernstein J, Garel J, Tkatchenko A, Joselevich E, Kronik L, Hod O 2010 Phys. Rev. Lett. 105 046801Google Scholar

    [50]

    Martin J M, Lemogne T, Chassagnette C, Gardos M N 1992 Tribol. T. 35 462Google Scholar

    [51]

    Wang W, Xie G X, Luo J B 2018 Friction 6 116Google Scholar

    [52]

    Zhang B Z, Zhang G G, Cheng Z W, Ma F, Lu Z B 2019 Appl. Surf. Sci. 483 742Google Scholar

    [53]

    Fan K, Chen X Y, Wang X, Liu X K, Liu Y, Lai W C, Liu X Y 2018 Acs Appl. Mater. Interfaces 10 28828Google Scholar

    [54]

    Cahangirov S, Ciraci S, Ozcelik V O 2013 Phys. Rev. B 87 205428Google Scholar

    [55]

    Li Q Y, Liu X Z, Kim S P, Shenoy V B, Sheehan P E, Robinson J T, Carpick R W 2014 Nano Lett. 14 5212Google Scholar

    [56]

    Wolloch M, Levita G, Restuccia P, Righi M C 2018 Phys. Rev. Lett. 121 026804

  • 图 1  二维材料界面摩擦学特性高通量计算流程示意图

    Figure 1.  The schematic diagram showing the procedure of high-throughput calculation of the tribological property at the interface of two-dimensional materials.

    图 2  BN/BN, H-BN/BN 和 F-BN/BN 双层体系原子结构的俯视图和侧视图 (a) Top和(b) Hollow位置BN/BN的俯视图和侧视图; (c) H-BN/BN和(d) F-BN/BN在Hollow位置的俯视图和侧视图

    Figure 2.  Top and side views for atomic structures of BN/BN, H-BN/BN, and F-BN/BN bilayer. Top and side views of BN/BN bilayer in (a) Top and (b) Hollow positions. Top and side views of (c) H-BN/BN and (d) F-BN/BN bilayers in Hollow position.

    图 3  BN/BN位于Top位置的界面结合能和载荷随层间距的变化 (a) 结合能; (b) 载荷

    Figure 3.  The variation of interlayer binding energy ($ {E}_{\rm{b}} $) and load with interlayer distance for BN/BN bilayer at Top position: (a) $ {E}_{\rm{b}} $ and (b) load.

    图 4  不同载荷下BN/BN的势能面 (a) 0 nN; (b) 1 nN; (c) 2 nN; (d) 3 nN; (e) 4 nN; (f) 5 nN; (g) 6 nN; (h) 7 nN; (i) 8 nN. T和H分别表示Top和Hollow位置, 白色带箭头线代表最小能量路径

    Figure 4.  Potential energy surface of BN/BN bilayer under normal load of (a) 0 nN, (b) 1 nN, (c) 2 nN, (d) 3 nN, (e) 4 nN, (f) 5 nN, (g) 6 nN, (h) 7 nN and (i) 8 nN. T and H present the Top and Hollow positions, respectively. The white lines with arrow represent the minimum energy path.

    图 5  0—8 nN载荷下BN/BN最小能量路径上势能的变化

    Figure 5.  The variation of potential energy along the minimum energy path of BN/BN bilayer under 0–8 nN loads.

    图 6  BN/BN, F-BN/BN, H-BN/BN的平均界面摩擦力($ {F}_{\rm{f}} $)和摩擦系数($ \mu $)随载荷的变化 (a)平均摩擦力; (b)摩擦系数

    Figure 6.  The variation of friction force at the interface of BN/BN, F-BN/BN, and H-BN/BN bilayers with respect to the normal load: (a) Averaged interfacial friction ($ {F}_{\rm{f}} $); (b) friction coefficient ($ \mu $).

    图 7  不同载荷下Gr/Gr的势能面 (a) 1 nN; (b) 4 nN; (c) 7 nN; (d) 10 nN; (e) 12 nN; (f) 13.5 nN. (a)—(d)中的H/T对应最小/最大势能, 而(e), (f)中的H/T对应最大/最小势能

    Figure 7.  Potential energy surface of graphene/graphene (Gr/Gr) bilayer under normal load of (a) 1 nN, (b) 4 nN, (c) 7 nN, (d) 10 nN, (e) 12 nN, and (f) 13.5 nN. T and H present the top and hollow positions, respectively. H/T in (a)–(d) is the position of minimum/maximum potential energy, whereas, T/H in (e), (f) is the position of minimum/maximum potential energy.

    图 8  Gr/Gr界面平均摩擦力和摩擦系数随载荷的变化 (a)平均摩擦力; (b)摩擦系数

    Figure 8.  The variation of friction force at the interface of graphene/graphene (Gr/Gr) bilayers with respect to the normal load: (a) Averaged interfacial friction and (b) friction coefficient.

    图 9  BN/BN和F-BN/BN的最高和最低势能态在0 nN和8 nN载荷下的差分电荷密度 (a) BN/BN, 0 nN; (b) BN/BN, 8 nN; (c) F-BN/BN, 0 nN; (d) F-BN/BN, 8 nN. 黄色代表电子聚集, 蓝色代表电子损失; 左边和右边的图分别对应最高和最低势能态; 图(a)和(c)中的等值面设置为0.00006e/Bohr3; 图 (b) 和 (d) 中的等值面设置为0.0003e/Bohr3

    Figure 9.  Differential charge density of BN/BN and F-BN/BN bilayer at the highest and lowest potential energy state under 0 nN and 8 nN loads. BN/BN bilayer under (a) 0 nN and (b) 8 nN load, F-BN/BN bilayer under (c) 0 nN and (d) 8 nN loads. The yellow color represents electron aggregation, and the blue color represents electron dissipation. The isosurface value in figure (a) and (c) is set to 0.00006e/Bohr3; the isosurface value in figure (b) and (d) is set to 0.0003e/Bohr3.

  • [1]

    Holmberg K, Andersson P, Nylund N O, Makela K, Erdemir A 2014 Tribol. Int. 78 94Google Scholar

    [2]

    Carpick R W 2006 Science. 313 184Google Scholar

    [3]

    Zhuang C Q, Liu L 2017 Aip Adv. 7 085103Google Scholar

    [4]

    Berman D, Erdemir A, Sumant A V 2018 Acs Nano. 12 2122Google Scholar

    [5]

    Yuan J H, Yang R, Zhang G Y 2022 Nanotechnology 33 102002Google Scholar

    [6]

    Marchetto D, Feser T, Dienwiebel M 2015 Friction 3 161Google Scholar

    [7]

    Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H 1999 Wear 232 199Google Scholar

    [8]

    Dominguez-Meister S, Rojas T C, Brizuela M, Sanchez-Lopez J C 2017 Sci. Technol. Adv. Mat. 18 122Google Scholar

    [9]

    Zhao X Y, Hamilton M, Sawyer W G, Perry S S 2007 Tribol. Lett. 27 113Google Scholar

    [10]

    Schirmeisen A, Jansen L, Holscher H, Fuchs H 2006 Appl. Phys. Lett. 88 607

    [11]

    Tshiprut Z, Zelner S, Urbakh M 2009 Phys. Rev. Lett. 102 136102Google Scholar

    [12]

    Weiss M, Majchrzycki L, Borkowska E, Cichomski M, Ptak A 2021 Tribol. Int. 162 107133Google Scholar

    [13]

    Luan B Q, Robbins M O 2005 Nature 435 929Google Scholar

    [14]

    Riedo E, Pallaci I, Boragno C, Brune H 2004 J. Phys. Chem. B 108 5324Google Scholar

    [15]

    He X, Liu Z, Ripley L B, Swensen V L, Griffin-Wiesner I J, Gulner B R, McAndrews G R, Wieser R J, Borovsky B P, Wang Q J, Kim S H 2021 Tribol. Int. 155 106780Google Scholar

    [16]

    Ru G L, Qi W H, Tang K W, Wei Y R, Xue T W 2020 Tribol. Int. 151 106483Google Scholar

    [17]

    Ru G L, Qi W H, Wei Y R, Tang K W, Xue T W 2021 Tribol. Int. 159 106974Google Scholar

    [18]

    Dong Y, Perez D, Gao H, Martini A 2012 J. Phys-Condens Mat. 24 265001Google Scholar

    [19]

    Zworner O, Holscher H, Schwarz U D, Wiesendanger R 1998 Appl. Phys. A-Mater. 66 S263Google Scholar

    [20]

    Fajardo O Y, Barel I, Urbakh M 2014 J. Phys-Condens Mat. 26 315002Google Scholar

    [21]

    Mate C M, Mcclelland G M, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 59 1942Google Scholar

    [22]

    Mo Y F, Turner K T, Szlufarska I 2009 Nature 457 1116Google Scholar

    [23]

    An X H, Yao H J, Ma F, Lu Z B 2015 Rsc Adv. 5 106239Google Scholar

    [24]

    Sun J H, Zhang Y N, Lu Z B, Li Q Y, Xue Q J, Du S Y, Pu J B, Wang L P 2018 J. Phys. Chem. Lett. 9 2554Google Scholar

    [25]

    Cheng Z W, Sun J H, Zhang B Z, Lu Z B, Ma F, Zhang G A, Xue Q J 2020 J. Phys. Chem. Lett. 11 5815Google Scholar

    [26]

    Wang K B, Li H, Guo Y F 2021 Materials 14 4717Google Scholar

    [27]

    Wang J J, Wang F, Li J M, Wang S J, Song Y L, Sun Q, Jia Y 2012 Tribol. Lett. 48 255Google Scholar

    [28]

    Gao W, Tkatchenko A 2015 Phys. Rev. Lett. 114 096101Google Scholar

    [29]

    Zhuang C Q, Liu L 2015 J. Appl. Phys. 117 114302Google Scholar

    [30]

    Ko J H, Kwon S, Byun I S, Choi J S, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137Google Scholar

    [31]

    Qu C Y, Wang K Q, Wang J, Gongyang Y J, Carpick R W, Urbakh M, Zheng Q S 2020 Phys. Rev. Lett. 125 12

    [32]

    Ruan X, Shi J, Wang X, Wang W Y, Fan X, Zhou F 2021 ACS Appl. Mater. Interfaces 13 40901Google Scholar

    [33]

    Liao M Z, Nicolini P, Du L J, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47Google Scholar

    [34]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [35]

    Filippov A E, Dienwiebel M, Frenken J W M, Klafter J, Urbakh M 2008 Phys. Rev. Lett. 100 046102Google Scholar

    [36]

    Zhang J, Bai Y, An L, Zhang B, Zhang J, Yu Y, Wang C M 2019 J. Appl. Phys. 126 035104Google Scholar

    [37]

    Cheng Z W, An X H, Wang J J, Zhang B Z, Lu Z B, Zhang G G 2020 Tribol. Int. 141 105961Google Scholar

    [38]

    Wang J J, Li J M, Fang L L, Sun Q, Jia Y 2014 Tribol. Lett. 55 405Google Scholar

    [39]

    Restuccia P, Levita G, Wolloch M, Losi G, Fatti G, Ferrario M, Righi M C 2018 Comp. Mater. Sci. 154 517Google Scholar

    [40]

    Gonze X, Ghosez P, Godby R W 1997 Phys. Rev. Lett. 78 294Google Scholar

    [41]

    Kresse G 1995 J. Non-Cryst. Solids 193 222

    [42]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [43]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [44]

    Weinan E, Ren W Q, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301

    [45]

    Zhong W, Tomanek D 1990 Phys. Rev. Lett. 64 3054Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [48]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [49]

    Marom N, Bernstein J, Garel J, Tkatchenko A, Joselevich E, Kronik L, Hod O 2010 Phys. Rev. Lett. 105 046801Google Scholar

    [50]

    Martin J M, Lemogne T, Chassagnette C, Gardos M N 1992 Tribol. T. 35 462Google Scholar

    [51]

    Wang W, Xie G X, Luo J B 2018 Friction 6 116Google Scholar

    [52]

    Zhang B Z, Zhang G G, Cheng Z W, Ma F, Lu Z B 2019 Appl. Surf. Sci. 483 742Google Scholar

    [53]

    Fan K, Chen X Y, Wang X, Liu X K, Liu Y, Lai W C, Liu X Y 2018 Acs Appl. Mater. Interfaces 10 28828Google Scholar

    [54]

    Cahangirov S, Ciraci S, Ozcelik V O 2013 Phys. Rev. B 87 205428Google Scholar

    [55]

    Li Q Y, Liu X Z, Kim S P, Shenoy V B, Sheehan P E, Robinson J T, Carpick R W 2014 Nano Lett. 14 5212Google Scholar

    [56]

    Wolloch M, Levita G, Restuccia P, Righi M C 2018 Phys. Rev. Lett. 121 026804

  • [1] Li Wen-Tao, Yuan Mei-Ling, Wang Jie-Min. Dynamics of C+ + H2 reaction based on a new potential energy surface. Acta Physica Sinica, 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [2] Yuan Jun-Peng, Liu Xiu-Ying, Li Xiao-Dong, Yu Jing-Xin. Molecular simulation for adsorption and separation of CH4/H2 in zeolites. Acta Physica Sinica, 2021, 70(15): 156801. doi: 10.7498/aps.70.20210101
    [3] Peng Jun-Hui, Tikhonov Evgenii. First-principles study of vacancy ordered structures, mechanical properties and electronic properties of ternary Hf-C-N system. Acta Physica Sinica, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] Su Wen-Xia, Lu Hai-Ming, Zeng Zi-Rui, Zhang Yi-Fei, Liu Jian, Xu Kun, Wang Dun-Hui, Du You-Wei. High-throughput computation on relationship between composition and magnetic phase transition temperature of LaFe11.5Si1.5-based magnetic refrigeration materials. Acta Physica Sinica, 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [5] Wu Si-Yuan, Wang Yu-Qi, Xiao Rui-Juan, Chen Li-Quan. Development and application of battery materials database. Acta Physica Sinica, 2020, 69(22): 226104. doi: 10.7498/aps.69.20201542
    [6] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [7] Zhao Wen-Li, Wang Yong-Gang, Zhang Lu-Lu, Yue Da-Guang, Meng Qing-Tian. Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $ $ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2(${\tilde {\bf X}{}^3}\bf A''$) surface. Acta Physica Sinica, 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [8] Zheng Lin, Mo Song-Ping, Li Yu-Xiu, Chen Ying, Xu Jin-Liang. Analysis of dynamic characteristics of two-component granular mixture segregation in thin shear cell. Acta Physica Sinica, 2019, 68(16): 164703. doi: 10.7498/aps.68.20190322
    [9] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] Jin Shuo, Sun Lu. Stability of hydrogen in tungsten with carbon impurity: a first-principles study. Acta Physica Sinica, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [12] Han Liang, Ning Tao, Liu De-Lian, He Liang. The study on the stress and the friction coefficient of tetrahedral amorphous carbon films bombarded by energetic Ar ion. Acta Physica Sinica, 2012, 61(17): 176801. doi: 10.7498/aps.61.176801
    [13] Han Liang, Yang Li, Yang Lamaocao, Wang Yan-Wu, Zhao Yu-Qing. Effect of magnetic filtering coil current on the tribology propertyof tetrahedral amorphous carbon films. Acta Physica Sinica, 2011, 60(4): 046802. doi: 10.7498/aps.60.046802
    [14] Han Liang, Chen Xian, Yang Li, Wang Yan-Wu, Wang Xiao-Yan, Zhao Yu-Qing. Surface modification and the friction coefficient of tetrahedral amorphous carbon films bombarded by energetic N ion. Acta Physica Sinica, 2011, 60(6): 066804. doi: 10.7498/aps.60.066804
    [15] Yuan Peng-Fei, Zhu Wen-Jun, Xu Ji-An, Liu Shao-Jun, Jing Fu-Qian. High pressure phase transition and phonon-dispersion relations of BeO calculated by first-principles method. Acta Physica Sinica, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [16] Gong Bo-Zhi, Zhang Bing-Jian. Non-equilibrium molecular dynamics simulation for mechanism and drag reduction of underwater supercavitation in open system. Acta Physica Sinica, 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [17] Yu Chun-Ri, Feng Er-Yin, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the potential energy surface and differential scattering cross sections of He-HI complex. Acta Physica Sinica, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [18] Jiang Zhen-Yi, Li Sheng-Tao. First principles study of potential energy curves of NiTi alloy. Acta Physica Sinica, 2006, 55(11): 6032-6035. doi: 10.7498/aps.55.6032
    [19] Han Hui-Xian, Peng Qian, Wen Zhen-Yi, Wang Yu-Bin. Local potential energy surface and vibration analysis for the S2O molecule. Acta Physica Sinica, 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [20] Wang Xiao-Yan, Ding Shi-Liang. Constructing potential energy surface of tetratomic molecules using Lie algebra. Acta Physica Sinica, 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
Metrics
  • Abstract views:  2520
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2022
  • Accepted Date:  11 October 2022
  • Available Online:  19 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回