Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of synthetic jet on circular cylinder radiated noise in laminar flow state

Song Jian Ren Feng Hu Hai-Bao Chen Xiao-Peng

Citation:

Effect of synthetic jet on circular cylinder radiated noise in laminar flow state

Song Jian, Ren Feng, Hu Hai-Bao, Chen Xiao-Peng
PDF
HTML
Get Citation
  • This article focuses on the effect of active control via synthetic jets (SJs) on sound generated by a two-dimensional circular cylinder by using the acoustic analogy method. The cylinder is immersed in a uniform upstream flow, where the corresponding Reynolds number is 100 and the Mach number is 0.1. A pair of SJs is placed near the cylinder’s separation point issuing periodically varying forcing, with different combinations of forcing frequency and phase difference. The lattice Boltzmann method (LBM) is coupled with the multi-direct forcing immersed boundary method to solve the near-field flow dynamics. The mechanism of the sound generation lies in the fact that pressure pluses are induced by the periodic vortex shedding from the cylinder’s surface, i.e. dipoles. In the case with active flow control, extra monopoles are generated by the unsteady flow rate resulting from the SJs' periodic blow/suction. The interaction between monopoles and dipoles is confirmed to have a big influence on the acoustic field. The acoustic analogy method is used in various cases with a wide range of control parameters, because it has a considerably lower computational cost than the direct simulation method. Taking into account the effect of the monopole, the acoustic analogy method is developed for solving two-dimensional sound field by substituting the Green’s function. Results indicate that the primary lock-on and the secondary lock-on occur in the case of specified control parameters. The frequency of vortex shedding is related to the SJs’ frequency, deviating from the unforced frequency. Owing to the noise induced by flow, the frequency and phase difference of the SJs also have significant influence on sound field. The far-field noise is enlarged although the SJs reduce drag, due to the induced extra monopole, as well as the strengthened hydrodynamic fluctuation. Further increasing SJs’ frequency or reducing the phase difference will enlarge the far-field noise and make the directivity transformed from dipole to monopole, since the SJs’ self-noise is stronger. Moreover, it is found that the acoustic power increases approximately 4–18 dB compared with the unforced circular cylinder and the drag dipole is strengthened in all combinations of control parameters. This study deepens the understanding of the effect of SJs on sound field, and provides a reference for future studying the control strategies of suppressing noise generated from bluff bodies.
      Corresponding author: Ren Feng, renfeng@nwpu.edu.cn ; Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the Open Fund of the Innovative Research of Ship General Performance, China (Grant No. 31122122), the Open Fund of Henan Key Laboratory of Underwater Intelligent Equipment, China (Grant No. KL01B2101), the First Batch of Science and Technology Projects for Innovation Ecosystem Construction by the National Supercomputing Center in Zhengzhou, China (Grant No. 201400211100), the National Natural Science Foundation of China (Grant No. 12102357), the Open Fund of the Laboratory of Aerodynamic Noise Control, China (Grant No. ANCL20210103), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0394).
    [1]

    Inoue O, Hatakeyama N 2002 J. Fluid Mech. 471 285Google Scholar

    [2]

    钟思阳, 黄迅 2018 空气动力学学报 36 363

    Zhong S Y, Huang X 2018 Acta Aerodyn. Sin. 36 363

    [3]

    杨茵, 陈迎春, 李栋 2017 空气动力学学报 35 220

    Yang Yin, Chen Y C, Li D 2017 Acta Aerodyn. Sin. 35 220

    [4]

    Ren F, Jean R, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [5]

    Wang C L, Tang H, Yu S C M, Duan F 2016 Phys. Fluids 28 053601Google Scholar

    [6]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Fluids 29 083602Google Scholar

    [7]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160Google Scholar

    [8]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Rev. Fluids 2 104701Google Scholar

    [9]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 物理学报 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [10]

    Ren F, Wang C L, Tang H 2021 Phys. Fluids 33 093601Google Scholar

    [11]

    Du L, Sun X F 2019 J. Fluids Struct. 84 421Google Scholar

    [12]

    Huang X, Zhang X, Li Y 2010 J. Sound Vib. 329 2477Google Scholar

    [13]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2019 Aerosp. Sci. Technol. 94 105370Google Scholar

    [14]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2020 Aerosp. Sci. Technol. 106 106137Google Scholar

    [15]

    Guo Y P 2008 J. Sound Vib. 311 843Google Scholar

    [16]

    Inoue O, Mori M, Hatakeyama N 2003 Phys. Fluids 15 1424Google Scholar

    [17]

    Ganta N, Mahato B, Bhumkar Y G 2019 Phys. Fluids 31 026104Google Scholar

    [18]

    Thomas F O, Kozlov A, Corke T C 2008 AIAA J. 46 1921Google Scholar

    [19]

    Leonidas S, Chris L, Ghader G 2017 J. Fluids Struct. 69 293Google Scholar

    [20]

    Angland D, Zhang X, Goodyer M 2012 AIAA J. 50 1670Google Scholar

    [21]

    Abbasi S, Souri M 2020 Int. J. Appl. Mech. 12 2050036Google Scholar

    [22]

    Wang M, Freund J B, Lele S K 2006 Annu. Rev. Fluid. Mech. 38 483Google Scholar

    [23]

    Guo Y P 2000 J. Fluid Mech. 403 201Google Scholar

    [24]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [25]

    d'Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [26]

    Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465Google Scholar

    [27]

    Peskin C S 2002 Acta Numer. 11 479Google Scholar

    [28]

    Wang Z L, Fan J R, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [30]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [31]

    戈德斯坦 著 (闫再友 译) 2014 气动声学 (北京: 国防工业出版社) 第97页

    Goldstein M E (translated by Yan Z Y) 2014 Aeroacoustics (Beijing: National Defence Industry Press) p97 (in Chinese)

    [32]

    Russell David, Wang Z J 2003 J. Comput. Phys. 191 177Google Scholar

    [33]

    Liu C, Zheng X, Sung C H 1998 J. Comput. Phys. 139 35Google Scholar

    [34]

    Chen X P, Ren H 2015 Int. J. Numer. Meth. Fluids 79 183Google Scholar

    [35]

    Williamson C H K, Brown G L 1998 J. Fluids Struct. 12 1073Google Scholar

    [36]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [37]

    Margnat F 2015 Comput. Fluids 109 13Google Scholar

  • 图 1  基于合成射流的圆柱主动控制示意图

    Figure 1.  Schematic of the active control of a circular cylinder using synthetic jets.

    图 2  计算域示意图

    Figure 2.  Schematic of the computational domain.

    图 3  利用流-声混合方法求解得到的瞬时声辐射场

    Figure 3.  Instantaneous pressure field computed via the hybrid flow-acoustics solver.

    图 4  测点(70D0, 0)位置瞬时声压对比图

    Figure 4.  Comparisons of temporally varying sound pressure at monitor point (70D0, 0).

    图 5  不同控制参数下发生频率锁定的情况

    Figure 5.  Lock-on events under a range of control parameters.

    图 6  典型控制参数下流场云图 (a) 未施加控制时; (b) $f_{\rm{sj }}^*=1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Figure 6.  Instantaneous vorticity contours: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π.

    图 7  CL-CD相图 (a)未施加控制时; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2$, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Figure 7.  Phase diagrams of CL-CD: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π.

    图 8  不同控制参数下流体动力参数的时频域特性 (a) 未施加控制时; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^*=2 $, Δϕ = π; (d) $f_{\rm{sj }}^* =2.1$, Δϕ = 0.5π

    Figure 8.  Time history and frequency spectra of the cylinder’s force coefficients: (a) Unforced case; (b) $f_{\rm{sj }}^* =1$, Δϕ = π; (c) $f_{\rm{sj }}^* =2$, Δϕ = π; (d) $f_{\rm{sj }}^*=2.1 $, Δϕ = 0.5π.

    图 9  不同控制参数下圆柱的平均阻力系数

    Figure 9.  Time-averaged drag coefficients under a range of control parameters.

    图 10  $f_{\rm{sj }}^* =0.9$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Figure 10.  Directivity of the pressure p'rms measured at r' = 75D0 with different Δϕ when fsj* = 0.9.

    图 11  $f_{\rm{sj }}^* =0.9$, Δϕ = 0.5π时 (a) 圆柱升阻力与上下射流瞬时速度和随时间变化曲线; (b), (c) 对应时刻声源相互作用示意图

    Figure 11.  (a) Instantaneous lift coefficient, drag coefficient and ua, and (b), (c) Interaction between monopole and dipole when $f_{\rm{sj }}^* =0.9$, Δϕ = 0.5π.

    图 12  $f_{\rm{sj }}^* =1.1$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Figure 12.  Directivity of the pressure p'rms measured at r' = 75D0 with different Δϕ when $f_{\rm{sj }}^* $ = 1.1.

    图 13  $f_{\rm{sj }}^* =2.1$时, 不同相位差Δϕr' = 75D0范围声辐射指向性

    Figure 13.  Directivity of the pressure p'rms measured at r' = 75D0 for different Δϕ when $f_{\rm{sj }}^* =2.1 $.

    图 14  Δϕ = 0.5π时, 不同射流频率$f_{\rm{sj }}^*$r' = 75D0范围声辐射指向性

    Figure 14.  Directivity of the pressure p'rms measured at r' = 75D0 with different $ f_{\rm{sj }}^* $ when Δϕ = 0.5π.

    图 15  不同控制参数下圆柱辐射噪声的声功率级

    Figure 15.  Acoustic power level measured at r' = 75D0 under a range of control parameters.

    表 1  主动控制的参数范围

    Table 1.  Parameter range of the synthetic jet based active control.

    参数范围
    射流频率 $ f_{\rm sj}^* $0.8—1.2, 1.5, 1.9—2.1, 2.9—3.1
    相位差 Δϕ0, 0.25π, 0.5π, 0.75π, π
    DownLoad: CSV

    表 2  网格无关性检验

    Table 2.  Validation of the mesh resolution and verification at Re = 100.

    CaseMethodologyCLSt
    D0 = 32δxLBM+IBM±0.3540.167
    D0 = 64δxLBM+IBM±0.3500.167
    D0 = 128δxLBM+IBM±0.3440.164
    Wang et al.[6]LBM±0.3290.166
    Russell and Wang[32]NS±0.3320.169
    Liu et al.[33]NS±0.3390.165
    DownLoad: CSV
  • [1]

    Inoue O, Hatakeyama N 2002 J. Fluid Mech. 471 285Google Scholar

    [2]

    钟思阳, 黄迅 2018 空气动力学学报 36 363

    Zhong S Y, Huang X 2018 Acta Aerodyn. Sin. 36 363

    [3]

    杨茵, 陈迎春, 李栋 2017 空气动力学学报 35 220

    Yang Yin, Chen Y C, Li D 2017 Acta Aerodyn. Sin. 35 220

    [4]

    Ren F, Jean R, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [5]

    Wang C L, Tang H, Yu S C M, Duan F 2016 Phys. Fluids 28 053601Google Scholar

    [6]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Fluids 29 083602Google Scholar

    [7]

    Wang C L, Tang H, Duan F, Yu S C M 2016 J. Fluids Struct. 60 160Google Scholar

    [8]

    Wang C L, Tang H, Yu S C M, Duan F 2017 Phys. Rev. Fluids 2 104701Google Scholar

    [9]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 物理学报 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [10]

    Ren F, Wang C L, Tang H 2021 Phys. Fluids 33 093601Google Scholar

    [11]

    Du L, Sun X F 2019 J. Fluids Struct. 84 421Google Scholar

    [12]

    Huang X, Zhang X, Li Y 2010 J. Sound Vib. 329 2477Google Scholar

    [13]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2019 Aerosp. Sci. Technol. 94 105370Google Scholar

    [14]

    Ma R X, Liu Z S, Zhang G H, Doolan C J, Moreau D J 2020 Aerosp. Sci. Technol. 106 106137Google Scholar

    [15]

    Guo Y P 2008 J. Sound Vib. 311 843Google Scholar

    [16]

    Inoue O, Mori M, Hatakeyama N 2003 Phys. Fluids 15 1424Google Scholar

    [17]

    Ganta N, Mahato B, Bhumkar Y G 2019 Phys. Fluids 31 026104Google Scholar

    [18]

    Thomas F O, Kozlov A, Corke T C 2008 AIAA J. 46 1921Google Scholar

    [19]

    Leonidas S, Chris L, Ghader G 2017 J. Fluids Struct. 69 293Google Scholar

    [20]

    Angland D, Zhang X, Goodyer M 2012 AIAA J. 50 1670Google Scholar

    [21]

    Abbasi S, Souri M 2020 Int. J. Appl. Mech. 12 2050036Google Scholar

    [22]

    Wang M, Freund J B, Lele S K 2006 Annu. Rev. Fluid. Mech. 38 483Google Scholar

    [23]

    Guo Y P 2000 J. Fluid Mech. 403 201Google Scholar

    [24]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [25]

    d'Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [26]

    Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465Google Scholar

    [27]

    Peskin C S 2002 Acta Numer. 11 479Google Scholar

    [28]

    Wang Z L, Fan J R, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [29]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [30]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [31]

    戈德斯坦 著 (闫再友 译) 2014 气动声学 (北京: 国防工业出版社) 第97页

    Goldstein M E (translated by Yan Z Y) 2014 Aeroacoustics (Beijing: National Defence Industry Press) p97 (in Chinese)

    [32]

    Russell David, Wang Z J 2003 J. Comput. Phys. 191 177Google Scholar

    [33]

    Liu C, Zheng X, Sung C H 1998 J. Comput. Phys. 139 35Google Scholar

    [34]

    Chen X P, Ren H 2015 Int. J. Numer. Meth. Fluids 79 183Google Scholar

    [35]

    Williamson C H K, Brown G L 1998 J. Fluids Struct. 12 1073Google Scholar

    [36]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [37]

    Margnat F 2015 Comput. Fluids 109 13Google Scholar

Metrics
  • Abstract views:  2377
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2022
  • Accepted Date:  01 December 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回