Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on variation test of atomic time based on pulsar observation

Han Meng-Na Tong Ming-Lei

Citation:

Research on variation test of atomic time based on pulsar observation

Han Meng-Na, Tong Ming-Lei
PDF
HTML
Get Citation
  • Pulsar time (PT) has high long-term stability, and its establishment process is completely different from that of atomic time (AT). Therefore, pulsar-based time scale can be used as an independent test for the fluctuation of atomic time scale. In this paper, the test results of the fluctuation of atomic time using pulsar time are presented in combination with the real clock difference data. In order to test the fluctuation of atomic time, the timing model parameters of four pulsars are used to simulate the pulse times of arrival (TOAs) data with TT(BIPM19) as the reference, and then the reference time is changed from TT(BIPM19) to TT(TAI). Based on this, the classical weighted average algorithm and the Wiener filtering algorithm are used to extract the variations of the atomic time relative to the pulsar time. The test results obtained by the two methods are compared, and it shows that the Wiener filtering algorithm is better than the weighted average algorithm for the extraction of the fluctuation of the atomic time. The wavelet threshold denoising method is added to the clock difference signal extracted by the Wiener filtering algorithm to deduct the high-frequency noise. After denoising, PT is closer to TT(BIPM19), which further improves the ability of PT to detect the fluctuation of AT. For the TOA measurement accuracy of 100 ns, the difference between PT and TT(BIPM19) can be kept roughly within 40 ns. This paper studies the method of further improving the accuracy of PT under the premise of given TOA measurement accuracy, which is of great significance for the next step to use PT for more effective application of time keeping.
      Corresponding author: Tong Ming-Lei, mltong@ntsc.ac.cn
    • Funds: Project supported by the SKA Project of the Ministry of Science and Technology of China (Grant No. 2020SKA0120103) and the National Natural Science Foundation of China (Grant No. U1831130)
    [1]

    Allan D W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 647Google Scholar

    [2]

    Panfilo G, Arias E F 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140

    [3]

    Kaplan G H 2006 arXiv: 0602086[astro-ph]

    [4]

    Guinot B 1988 Astron. Astrophys. 192 370

    [5]

    Petit G 2003 Proceedings of the 35th Annual Precise Time and Time Interval Systems and Applications Meeting San Diego, California, December 2–4, 2003 p317

    [6]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [7]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [8]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [9]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [10]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q 2016 Mod. Phys. Lett. A 31 1650070

    [11]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Gao Z F, Song D L, Li X, Shan H, Wang N 2019 Astron. Nachr. 340 241Google Scholar

    [14]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [15]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [16]

    Lorimer D R, Kramer M 1965 Handbook of Pulsar Astronomy (New York: Cambridge University Press) pp32–34

    [17]

    Coles W, Hobbs G, Champion D J, Manchester R N, Verbiest J P W 2011 Mon. Not. R. Astron. Soc. 418 561Google Scholar

    [18]

    Hobbs G, Guo L, Caballero R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Osłowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, van Haasteren R, Wang J B, Wang Y, Zhu X J 2020 Mon. Not. R. Astron. Soc. 491 5951Google Scholar

    [19]

    Gao F, Tong M L, Gao Y P, Yang T G, Zhao C S 2019 Res. Astron. Astrophys. 19 100Google Scholar

    [20]

    Petit G, Tavella P 1985 Astron. Astrophys. 308 290

    [21]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, van Straten W, Verbiest J P W, Yardley D, You X P 2012 Mon. Not. R. Astron. Soc. 427 2780Google Scholar

    [22]

    仲崇霞, 杨廷高 2009 天文学报 50 425Google Scholar

    Zhong C X, Yang T G 2009 Acta Astronom. Sin. 50 425Google Scholar

    [23]

    Yang T G, Tong M L, Gao Y P 2022 Res. Astron. Astrophys. 22 105012Google Scholar

    [24]

    BIPM Time Department https://webtai.bipm.org/ftp/pub/tai/data/[2022-10-07]

    [25]

    Hobbs G 2013 Classical Quant. Grav. 30 224007Google Scholar

    [26]

    PPTA Data Release https://doi.org/10.4225/08/534CC21379C12[2022-10-08]

    [27]

    Hobbs G B, Edwards R T, Manchester R N 2006 Mon. Not. R. Astron. Soc. 369 655Google Scholar

    [28]

    Manchester R N, Hobbs G, Bailes M, Coles W A, van Straten W, Keith M J, Shannon R M, Bhat N D R, Brown A, Burke-Spolaor S G, Champion D J, Chaudhary A, Edwards R T, Hampson G, Hotan A W, Jameson A, Jenet F A, Kesteven M J, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds J R, Sarkissian J M, Verbiest J P W, Wen Z L, Wilson W E, Yardley D, Yan W M, You X P 2012 Publ. Astron. Soc. Pac 30 17

    [29]

    Wiener N, Mathematician C 1949 Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications (Massachusetts: MIT press) pp1043–1054

    [30]

    Rodin A E 2008 Mon. Not. R. Astron. Soc. 387 1583Google Scholar

    [31]

    Noor M A 1993 J. Optim. Theory Appl. 79 197Google Scholar

    [32]

    Kopeikin S M 1999 Mon. Not. R. Astron. Soc. 305 563Google Scholar

    [33]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学 力学 天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [34]

    Zhao R M, Cui H 2015 Proceedings of the 14th International Symposium on Plasma Chemistry Sousse, Tunisia, December 18–20, 2015 p1

    [35]

    Shan H, Yuan J P, Wang N, Wang Z 2022 Astrophys. J. 935 117Google Scholar

    [36]

    王英红, 王冬霞, 杨洪升 2004 辽宁工学院学报 24 7

    Wang Y H, Wang D X, Yang H S 2004 Journal of Liaoning Institute of Technology 24 7

    [37]

    Cameron A D, Li D, Hobbs G, Zhang L, Miao C C, Wang J B, Yuan M, Wang S, Jacobs Corban G, Cruces M, Dai S, Feng Y, Han J, Kaczmarek J F, Niu J R, Pan Z C, Qian L, Tao Z Z, Wang P, Wang S Q, Xu H, Xu R X, Yue Y L, Zhang S B, Zhi Q J, Zhu W W, Champion D J, Kramer M, Zhou S Q, Qiu K P, Zhu M 2020 Mon. Not. R. Astron. Soc. 495 3515Google Scholar

    [38]

    Han J L, Wang C, Wang P F, Wang T, Zhou D J, Sun J H, Yan Y, Su W Q, Jing W C, Chen X, Gao X Y, Hou L G, Xu J, Lee K J, Wang N, Jiang P, Xu R X, Yan J, Gan H Q, Guan X, Huang W J, Jiang J C, Li H, Men Y P, Sun C, Wang B J, Wang H G, Wang S Q, Xie J T, Xu H, Yao R, You X P, Yu D J, Yuan J P, Yuen R, Zhang C F, Zhu Y 2021 Res. Astron. Astrophys. 21 107Google Scholar

  • 图 1  四颗脉冲星的计时残差[28]

    Figure 1.  Timing residuals of the four pulsars[28]

    图 2  以TAI为参考时四颗星的拟合前后计时残差

    Figure 2.  Pre-fit and post-fit timing residuals of four pulsars when the reference time scale is TAI

    图 3  经典加权平均算法计算的TT (PT)-TT (TAI)

    Figure 3.  TT (PT)-TT (TAI) calculated by classical weighted average algorithm

    图 4  Wiener 滤波算法计算的TT (PT)-TT (TAI)

    Figure 4.  TT (PT)-TT (TAI) calculated by Wiener filtering algorithm

    图 5  TT (PT)与TT (BIPM19)的差值

    Figure 5.  Differences between TT (PT) and TT (BIPM19)

    图 6  小波分解树结构图

    Figure 6.  Structure diagram of the wavelet decomposing tree

    图 7  TT (PT)-TT (TAI)经小波阈值去噪前后的对比图

    Figure 7.  TT (PT)-TT (TAI) before and after processing by wavelet threshold denoising method

    图 8  小波阈值去噪前后TT (PT)相对于TT (BIPM19) 的变化

    Figure 8.  Changes of TT (PT) relative to TT (BIPM19) before and after wavelet threshold denoising

    图 9  小波阈值去噪后TT (PT)-TT (BIPM19)的分布图

    Figure 9.  Distribution map of TT (PT)-TT (BIPM19) after processing by wavelet threshold denoising method

    表 1  四颗脉冲星的基本参数[28]

    Table 1.  Basic parameters of the four pulsars[28]

    参数含义数值
    PSRJ脉冲星名称J0437-4715J1713+0747J1744-1134J1909-3744
    RAJ/(hh:mm:ss.sss)J2000赤经04:37:15.896176617:13:49.532723317:44:29.405789819:09:47.4346727
    DECJ/(°)J2000赤纬–47:15:09.11071+07:47:37.49783–11:34:54.68134–37:44:14.46677
    F0/$\rm{s}^{-1}$自转频率173.6879458121841218.8118404348010245.4261197130545339.3156872882437
    F1/$\rm{s}^{-2}$自转频率的一阶导数–1.728362 × 1015–4.08381×1016–5.38183 × 1016–1.614845 × 1015
    PEPOCH/MJD周期确定的历元54500545005450054500
    DM/($\rm{cm^{-3}\cdot pc}$)色散2.644915.99033.136910.3927
    DownLoad: CSV

    表 2  四颗脉冲星的归一化权重

    Table 2.  Normalized weights of the four pulsars

    PSRJ0437-4715J1713+0747J1744-1134J1909-3744
    RMS/μs0.2150.4570.6530.191
    $w_i$0.3850.0850.0420.488
    DownLoad: CSV
  • [1]

    Allan D W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 647Google Scholar

    [2]

    Panfilo G, Arias E F 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140

    [3]

    Kaplan G H 2006 arXiv: 0602086[astro-ph]

    [4]

    Guinot B 1988 Astron. Astrophys. 192 370

    [5]

    Petit G 2003 Proceedings of the 35th Annual Precise Time and Time Interval Systems and Applications Meeting San Diego, California, December 2–4, 2003 p317

    [6]

    Gao Z F, Wang N, Shan H, Li X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [7]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [8]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [9]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [10]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q 2016 Mod. Phys. Lett. A 31 1650070

    [11]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [12]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [13]

    Gao Z F, Song D L, Li X, Shan H, Wang N 2019 Astron. Nachr. 340 241Google Scholar

    [14]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [15]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [16]

    Lorimer D R, Kramer M 1965 Handbook of Pulsar Astronomy (New York: Cambridge University Press) pp32–34

    [17]

    Coles W, Hobbs G, Champion D J, Manchester R N, Verbiest J P W 2011 Mon. Not. R. Astron. Soc. 418 561Google Scholar

    [18]

    Hobbs G, Guo L, Caballero R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Osłowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, van Haasteren R, Wang J B, Wang Y, Zhu X J 2020 Mon. Not. R. Astron. Soc. 491 5951Google Scholar

    [19]

    Gao F, Tong M L, Gao Y P, Yang T G, Zhao C S 2019 Res. Astron. Astrophys. 19 100Google Scholar

    [20]

    Petit G, Tavella P 1985 Astron. Astrophys. 308 290

    [21]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, van Straten W, Verbiest J P W, Yardley D, You X P 2012 Mon. Not. R. Astron. Soc. 427 2780Google Scholar

    [22]

    仲崇霞, 杨廷高 2009 天文学报 50 425Google Scholar

    Zhong C X, Yang T G 2009 Acta Astronom. Sin. 50 425Google Scholar

    [23]

    Yang T G, Tong M L, Gao Y P 2022 Res. Astron. Astrophys. 22 105012Google Scholar

    [24]

    BIPM Time Department https://webtai.bipm.org/ftp/pub/tai/data/[2022-10-07]

    [25]

    Hobbs G 2013 Classical Quant. Grav. 30 224007Google Scholar

    [26]

    PPTA Data Release https://doi.org/10.4225/08/534CC21379C12[2022-10-08]

    [27]

    Hobbs G B, Edwards R T, Manchester R N 2006 Mon. Not. R. Astron. Soc. 369 655Google Scholar

    [28]

    Manchester R N, Hobbs G, Bailes M, Coles W A, van Straten W, Keith M J, Shannon R M, Bhat N D R, Brown A, Burke-Spolaor S G, Champion D J, Chaudhary A, Edwards R T, Hampson G, Hotan A W, Jameson A, Jenet F A, Kesteven M J, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds J R, Sarkissian J M, Verbiest J P W, Wen Z L, Wilson W E, Yardley D, Yan W M, You X P 2012 Publ. Astron. Soc. Pac 30 17

    [29]

    Wiener N, Mathematician C 1949 Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications (Massachusetts: MIT press) pp1043–1054

    [30]

    Rodin A E 2008 Mon. Not. R. Astron. Soc. 387 1583Google Scholar

    [31]

    Noor M A 1993 J. Optim. Theory Appl. 79 197Google Scholar

    [32]

    Kopeikin S M 1999 Mon. Not. R. Astron. Soc. 305 563Google Scholar

    [33]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学 力学 天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [34]

    Zhao R M, Cui H 2015 Proceedings of the 14th International Symposium on Plasma Chemistry Sousse, Tunisia, December 18–20, 2015 p1

    [35]

    Shan H, Yuan J P, Wang N, Wang Z 2022 Astrophys. J. 935 117Google Scholar

    [36]

    王英红, 王冬霞, 杨洪升 2004 辽宁工学院学报 24 7

    Wang Y H, Wang D X, Yang H S 2004 Journal of Liaoning Institute of Technology 24 7

    [37]

    Cameron A D, Li D, Hobbs G, Zhang L, Miao C C, Wang J B, Yuan M, Wang S, Jacobs Corban G, Cruces M, Dai S, Feng Y, Han J, Kaczmarek J F, Niu J R, Pan Z C, Qian L, Tao Z Z, Wang P, Wang S Q, Xu H, Xu R X, Yue Y L, Zhang S B, Zhi Q J, Zhu W W, Champion D J, Kramer M, Zhou S Q, Qiu K P, Zhu M 2020 Mon. Not. R. Astron. Soc. 495 3515Google Scholar

    [38]

    Han J L, Wang C, Wang P F, Wang T, Zhou D J, Sun J H, Yan Y, Su W Q, Jing W C, Chen X, Gao X Y, Hou L G, Xu J, Lee K J, Wang N, Jiang P, Xu R X, Yan J, Gan H Q, Guan X, Huang W J, Jiang J C, Li H, Men Y P, Sun C, Wang B J, Wang H G, Wang S Q, Xie J T, Xu H, Yao R, You X P, Yu D J, Yuan J P, Yuen R, Zhang C F, Zhu Y 2021 Res. Astron. Astrophys. 21 107Google Scholar

  • [1] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] Zhou Qing-Yong, Wei Zi-Qing, Yan Lin-Li, Sun Peng-Fei, Liu Si-Wei, Feng Lai-Ping, Jiang Kun, Wang Yi-Di, Zhu Yong-Xing, Liu Xiao-Gang, Ming Feng, Zhang Fen, He Zhen-Ni. Space/ground based pulsar timescale for comprehensive PNT system. Acta Physica Sinica, 2021, 70(13): 139701. doi: 10.7498/aps.70.20210288
    [3] Zheng Tian-Yun, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. High-order natural transition simulation method based on deep residual network. Acta Physica Sinica, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [4] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [5] Kang Zhi-Wei, Wu Chun-Yan, Liu Jin, Ma Xin, Gui Ming-Zhen. Pulsar time delay estimation method based on two-level compressed sensing. Acta Physica Sinica, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [6] Fang Hai-Yan, Liu Bing, Li Xiao-Ping, Sun Hai-Feng, Xue Meng-Fan, Shen Li-Rong, Zhu Jin-Peng. Time delay estimation method of X-ray pulsar observed profile based on the optimal frequency band. Acta Physica Sinica, 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [7] Chen Dian-Bing, Zhu Ming, Gao Wen, Wang Hui-Li, Yang Hang. Visual tracking based on the estimation of representation residual matrix. Acta Physica Sinica, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [8] Song Jia-Ning, Xu Guo-Dong, Li Peng-Fei. Multiple harmonic X-ray pulsar signal phase estimation method. Acta Physica Sinica, 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [9] Lin Xu, Luo Zhi-Cai. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors. Acta Physica Sinica, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [10] Sun Hai-Feng, Xie Kai, Li Xiao-Ping, Fang Hai-Yan, Liu Xiu-Ping, Fu Ling-Zhong, Sun Hai-Jian, Xue Meng-Fan. A simulation technique of X-ray pulsar signals with high timing stability. Acta Physica Sinica, 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [11] Zhou Qing-Yong, Ji Jian-Feng, Ren Hong-Fei. Timing equation in X-ray pulsar autonomous navigation. Acta Physica Sinica, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [12] Wang Lu, Xu Lu-Ping, Zhang Hua, Luo Nan. Pulsar signal detection based on S-transform. Acta Physica Sinica, 2013, 62(13): 139702. doi: 10.7498/aps.62.139702
    [13] Han Xiao, Yin Jing-Wei, Guo Long-Xiang, Zhang Xiao. Research on bionic underwater acoustic communication technology based on differential Pattern time delay shift coding and dolphin whistles. Acta Physica Sinica, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [14] Zhou Qing-Yong, Ji Jian-Feng, Ren Hong-Fei. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data. Acta Physica Sinica, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [15] Bi Yan-Meng, Chen Jie, Yang Guang-lin, Liao mi, Wu Rong-Hua. GPS occultation excess phase computed utilizing the updated single difference technique. Acta Physica Sinica, 2012, 61(14): 149301. doi: 10.7498/aps.61.149301
    [16] Zhang Hua, Xu Lu-Ping. Minimum entropy cumulation method of pulsar profile. Acta Physica Sinica, 2011, 60(3): 039701. doi: 10.7498/aps.60.039701
    [17] Wei Bing, Dong Yu-Hang, Wang Fei, Li Cun-Zhi. A modificatory algorithm for electrically thin dispersive layers base on shift operator finite-difference time-domain method. Acta Physica Sinica, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [18] Zhang Yu-Qiang, Ge De-Biao. An improved shift operator finite-difference time-domain method based on digital signal processing technique for general dispersive medium. Acta Physica Sinica, 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [19] Zhong Chong-Xia, Yang Ting-Gao. Use of wiener filtration in wavelet domain in ensemble pulsar time algorithm. Acta Physica Sinica, 2007, 56(10): 6157-6163. doi: 10.7498/aps.56.6157
    [20] Cheng Tan-sheng;Zeng Jin-yan. MOMENS OF INERTIA OF EXCITED BANDS AND THE EVEN一ODD DIFFERENCE. Acta Physica Sinica, 1977, 26(3): 243-249. doi: 10.7498/aps.26.243
Metrics
  • Abstract views:  3346
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2022
  • Accepted Date:  10 January 2023
  • Available Online:  04 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回