Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap

Liang Wei-Chen Wang Yu-Han Zhang Xi Wang Fei Jia Feng-Dong Xue Ping Zhong Zhi-Ping

Citation:

Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap

Liang Wei-Chen, Wang Yu-Han, Zhang Xi, Wang Fei, Jia Feng-Dong, Xue Ping, Zhong Zhi-Ping
PDF
HTML
Get Citation
  • The time-of-flight mass spectrum of charged particles, which are created through two-step cw-laser photoionization of laser-cooled 87Rb atoms in an ion-neutral hybrid trap, is quantitatively investigated to further facilitate the study of Rb+-Rb reactive collisions. A microchannel plate (MCP) is used to detect charged particles, and two spectral peaks corresponding to the 87Rb+ ions and the product $ \rm {}^{87}Rb_2^+ $ of the Rb+-Rb reaction were observed in the time-of-flight spectrum, respectively. The two peaks overlapped with each other and both showed an asymmetric profile. The information about the intensity, position, and half-width of the peak for a specific ion species was derived by fitting the time-of-flight spectrum with the probability density function of the Gumbel distribution. Then the relative ion intensity was converted into absolute ion number through the following steps. The rate equation of the total number of ions, which includes the number of atoms, the calibration factor of MCP, and the effective decay rate of ions in the ion trap, was established by modeling the photoionization of atoms. Combined with the absolute number of atoms measured by absorption imaging, the calibration factor in converting the ion intensity into the ion number was derived and the relative ion intensity was converted into the absolute number of ions. This provides a method of calibrating the MCP. The reliability of our calibration method was proved by the fact that the calibration factor in converting the intensity measured by MCP into particle number is independent of the duration of photoionization, the intensity and wavelength of the ionizing laser. Moreover, in order to explain the relationship between the peak width and temperature of the corresponding ion species, the time-of-flight spectra of the ions trapped in the ion trap were simulated by using COMSOL Multiphysics. The simulation results demonstrated that the large ion kinetic energy results in a narrow spectral peak. In sum, we quantitatively analyze and simulate the time-of-flight spectrum of the photoionization of cold atoms in the Rb+-Rb hybrid trap. The absolute number of ions is obtained by the intensity of the spectral peak, and the width of the spectral peak is related to the temperature of the ions. These results lay a foundation for the in-depth analysis of the ion-atom reaction collision and charged particle temperature relaxation in the photoionization of cold atoms, and thus further elucidating the subsequent collisional dynamics of ultracold plasmas.
      Corresponding author: Xue Ping, xuep@tsinghua.edu.cn ; Zhong Zhi-Ping, zpzhong@ucas.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 1212014), the Fundamental Research Fund for the Central Universities, the Key Research Program of the Chinese Academy of Sciences, China (Grant No. XDPB08-3), the Specialized Research Fund for CAS Key Laboratory of Geospace Environment, China (Grant No. GE2020-01), the National Key R&D Program of China (Grant Nos. 2017YFA0304900, 2017YFA0402300), and the National Natural Science Foundation of China (Grant Nos. 61975091, 61575108)
    [1]

    Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar

    [2]

    Killian T, Pattard T, Pohl T 2007 Phys. Rep. 449 77Google Scholar

    [3]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [4]

    张栋栋, 童昕 2020 物理 49 241Google Scholar

    Zhang D D, Tong X 2020 Physics 49 241Google Scholar

    [5]

    Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F 2021 Phys. Rev. Lett. 126 033401Google Scholar

    [6]

    Rellergert W G, Sullivan S T, Kotochigova S, Petrov A, Chen K, Schowalter S J, Hudson E R 2011 Phys. Rev. Lett. 107 243201Google Scholar

    [7]

    Hall F H J, Aymar M, Bouloufa-Maafa N, Dulieu O, Willitsch S 2011 Phys. Rev. Lett. 107 243202Google Scholar

    [8]

    Hall F H J, Eberle P, Hegi G, Raoult M, Aymar M, Dulieu O, Willitsch S 2013 Mol. Phys. 111 2020Google Scholar

    [9]

    Hall F H, Aymar M, Raoult M, Dulieu O, Willitsch S 2013 Mol. Phys. 111 1683Google Scholar

    [10]

    Sullivan S T, Rellergert W G, Kotochigova S, Hudson E R 2012 Phys. Rev. Lett. 109 223002Google Scholar

    [11]

    Härter A, Krükow A, Brunner A, Schnitzler W, Schmid S, Denschlag J H 2012 Phys. Rev. Lett. 109 123201Google Scholar

    [12]

    Krükow A, Mohammadi A, Härter A, Denschlag J H, Pérez-Ríos J, Greene C H 2016 Phys. Rev. Lett. 116 193201Google Scholar

    [13]

    Krükow A, Mohammadi A, Härter A, Hecker Denschlag J 2016 Phys. Rev. A 94 030701Google Scholar

    [14]

    Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F 2020 Phys. Rev. A 102 041301Google Scholar

    [15]

    Mohammadi A, Krükow A, Mahdian A, Deiß M, Pérez-Ríos J, da Silva H, Raoult M, Dulieu O, Hecker Denschlag J 2021 Phys. Rev. Research 3 013196Google Scholar

    [16]

    Lv S F, Jia F D, Liu J Y, Xu X Y, Xue P, Zhong Z P 2017 Chin. Phys. Lett. 34 013401Google Scholar

    [17]

    Sesko D W, Walker T G, Wieman C E 1991 J. Opt. Soc. Am. B 8 946Google Scholar

    [18]

    Paul W 1990 Rev. Mod. Phys. 62 531Google Scholar

    [19]

    Li X K, Zhang D C, Lv S F, Liu J Y, Jia F D, Wu Y, Lin X H, Li R, Xu X Y, Xue P, Liu X J, Zhong Z P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 219501Google Scholar

    [20]

    Haan L D, Ferreira A 2006 Extreme Value Theory: an Introduction (New York; London: Springer) pp6–10

    [21]

    Lee S, Ravi K, Rangwala S A 2013 Phys. Rev. A 87 052701Google Scholar

    [22]

    Liang W C, Jia F D, Wang F, Zhang X, Zhou J Y, Wang Y H, Qian J Y, Wang J G, Wu Y, Xue P, Zhong Z P 2022 arXiv: 2303.10360 [physics.atom-ph]

    [23]

    杜丽军 2014 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Du L J 2014 Ph.D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

  • 图 1  典型飞行时间谱及其拟合曲线. 空心圆点代表实验获得的离子飞行时间谱. 虚线、点划线分别表示对离子飞行时间谱主峰、伴峰的拟合. 左Y轴代表微通道板(MCP)测量得到的离子信号强度, 右Y轴代表对MCP标定以后, 左Y轴的同一点对应的每时刻离子计数, 标定因子为$ C_{{\rm{MCP}}} = 1.94\times10^{14} $. 图中时间零点对应关闭离子阱、引导离子进入MCP的时刻

    Figure 1.  Typical time-of-flight (TOF) spectra and the fitted curve. Hollow circle stands for the ion signal measured experimentally. Dashed line and dotted line are the fitted curve of first peak and second peak, respectively. Left Y-axis represents the ion signal measured by multichannel plate (MCP). Right Y-axis corresponds the calibrated ion count by the calibration factor $ C_{{\rm{MCP}}} = $$ 1.94\times10^{14} $. The time zero is set to the moment when the ion trap was switched off and ions were guided to the MCP

    图 2  连续光电离过程中冷原子数随光电离持续时间的变化及拟合曲线

    Figure 2.  Number of remaining atoms as a function of the duration of cw-laser photoionization and the fitted curve

    图 3  实验测量的总离子数随光电离作用时间的变化及拟合曲线. 左Y轴对应实验测量得到的总离子相对强度, 右Y轴是对MCP标定以后, 左Y轴的同一点对应的绝对总离子数, 标定因子为$ C_{\rm{MCP}} = 1.94\times10^{14} $

    Figure 3.  Measured total number of ions as a function of the duration ionization time and the fitted curve. Left Y-axis represents the relative ion intensity measured in experiments. Right Y-axis corresponds the calibrated absolute number of ions by the calibration factor of $C_{\rm{MCP}} = 1.94\times10^{14}$

    图 4  拟合得到微通道板的标定因子与电离光强度关系. 电离光波长分别为447, 463和478.8 nm

    Figure 4.  Fitted calibration factor for our microchannel plate (MCP) detector as the function of the intensity of ionizing laser. The wavelength of the ionizing laser are 447, 463 and 478.8 nm, respectively

    图 5  使用COMSOL Multiphysics分别仿真离子阱囚禁10000, 20000, 50000, 100000个原子离子和分子离子时得到的飞行时间谱

    Figure 5.  Time-of-flight spectra of 10000, 20000, 50000 and 100000 Rb+ and Rb2+ simulated by COMSOL Multiphysics

    图 6  实验测量的飞行时间谱及COMSOL Multiphysics仿真的飞行时间谱的比较. 实验谱在铷离子-铷原子混合阱的光电离过程测量得到, 电离光波长为478.8 nm, 强度为265.3 mW/cm2, 电离光作用在冷原子云的持续时间为500 ms. 仿真计算中, 考虑了$ 10^5 $个铷原子离子和$ 10^5 $个铷分子离子, 带电粒子的初始温度的设置为20 mK

    Figure 6.  Comparison between experimental and simulated TOF spectra by COMSOL Multiphysics. Experimental TOF spectra were measured in the photoionization process of our ion-atom hybrid trap. The wavelength and the intensity of the ionizing laser were 478.8 nm and 265.3 mW/cm2, respectively. The duration of photoionization was 500 ms. In the simulation, $ 10^5 $ Rb+ and $ 10^5 $ $ {\rm Rb}_2^+ $ were added with an initial temperature of 20 mK

  • [1]

    Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar

    [2]

    Killian T, Pattard T, Pohl T 2007 Phys. Rep. 449 77Google Scholar

    [3]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [4]

    张栋栋, 童昕 2020 物理 49 241Google Scholar

    Zhang D D, Tong X 2020 Physics 49 241Google Scholar

    [5]

    Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F 2021 Phys. Rev. Lett. 126 033401Google Scholar

    [6]

    Rellergert W G, Sullivan S T, Kotochigova S, Petrov A, Chen K, Schowalter S J, Hudson E R 2011 Phys. Rev. Lett. 107 243201Google Scholar

    [7]

    Hall F H J, Aymar M, Bouloufa-Maafa N, Dulieu O, Willitsch S 2011 Phys. Rev. Lett. 107 243202Google Scholar

    [8]

    Hall F H J, Eberle P, Hegi G, Raoult M, Aymar M, Dulieu O, Willitsch S 2013 Mol. Phys. 111 2020Google Scholar

    [9]

    Hall F H, Aymar M, Raoult M, Dulieu O, Willitsch S 2013 Mol. Phys. 111 1683Google Scholar

    [10]

    Sullivan S T, Rellergert W G, Kotochigova S, Hudson E R 2012 Phys. Rev. Lett. 109 223002Google Scholar

    [11]

    Härter A, Krükow A, Brunner A, Schnitzler W, Schmid S, Denschlag J H 2012 Phys. Rev. Lett. 109 123201Google Scholar

    [12]

    Krükow A, Mohammadi A, Härter A, Denschlag J H, Pérez-Ríos J, Greene C H 2016 Phys. Rev. Lett. 116 193201Google Scholar

    [13]

    Krükow A, Mohammadi A, Härter A, Hecker Denschlag J 2016 Phys. Rev. A 94 030701Google Scholar

    [14]

    Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F 2020 Phys. Rev. A 102 041301Google Scholar

    [15]

    Mohammadi A, Krükow A, Mahdian A, Deiß M, Pérez-Ríos J, da Silva H, Raoult M, Dulieu O, Hecker Denschlag J 2021 Phys. Rev. Research 3 013196Google Scholar

    [16]

    Lv S F, Jia F D, Liu J Y, Xu X Y, Xue P, Zhong Z P 2017 Chin. Phys. Lett. 34 013401Google Scholar

    [17]

    Sesko D W, Walker T G, Wieman C E 1991 J. Opt. Soc. Am. B 8 946Google Scholar

    [18]

    Paul W 1990 Rev. Mod. Phys. 62 531Google Scholar

    [19]

    Li X K, Zhang D C, Lv S F, Liu J Y, Jia F D, Wu Y, Lin X H, Li R, Xu X Y, Xue P, Liu X J, Zhong Z P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 219501Google Scholar

    [20]

    Haan L D, Ferreira A 2006 Extreme Value Theory: an Introduction (New York; London: Springer) pp6–10

    [21]

    Lee S, Ravi K, Rangwala S A 2013 Phys. Rev. A 87 052701Google Scholar

    [22]

    Liang W C, Jia F D, Wang F, Zhang X, Zhou J Y, Wang Y H, Qian J Y, Wang J G, Wu Y, Xue P, Zhong Z P 2022 arXiv: 2303.10360 [physics.atom-ph]

    [23]

    杜丽军 2014 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Du L J 2014 Ph.D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

  • [1] Wang Yi, Zhang Qiu-Nan, Han Dong, Li Yuan-Jing. Time of flight technology based on multi-gap resistive plate chamber. Acta Physica Sinica, 2019, 68(10): 102901. doi: 10.7498/aps.68.20182192
    [2] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [3] Tang Wen-Hui, Liu Bang-Wu, Zhang Bo-Cheng, Li Min, Xia Yang. Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition. Acta Physica Sinica, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [4] Shen Huan, Hu Chun-Long, Deng Xu-Lan. Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses. Acta Physica Sinica, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [5] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [6] Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing. Study on evaporation from alloys used in microwave vacuum electron devices. Acta Physica Sinica, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [7] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [8] Feng Jia-Heng, Tang Li-Dan, Liu Bang-Wu, Xia Yang, Wang Bing. Low-temperature growth of AlN thin films by plasma-enhanced atomic layer deposition. Acta Physica Sinica, 2013, 62(11): 117302. doi: 10.7498/aps.62.117302
    [9] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [10] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [11] Wang Zhen-Xia, Zhu Jian-Kang, Ren Cui-Lan, Zhang Wei. Systhesis of C59N and C19N crystals. Acta Physica Sinica, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [12] He Jun, Wang Jing, Qiu Ying, Wang Yan-Hua, Zhang Tian-Cai, Wang Jun-Min. Influence of parameter errors on the temperature measurement of cold atoms via short-distance time-of-flight absorption spectra. Acta Physica Sinica, 2008, 57(10): 6221-6226. doi: 10.7498/aps.57.6221
    [13] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [14] Shi Yong, Li Qi-Feng, Wang Hua, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. An approach to obtain the photofragment translational energy distribution from time-of-flight profile. Acta Physica Sinica, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [15] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [16] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [17] Xia Zhu-Hong, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Bao Jian, Xiong Lu-Yuan. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [18] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
    [19] Liu Shu-rong, Jiang Wei-lin, Liu Jia-rui, Lin Yin-nong. STRUCTURE EFFECT OF SPUTTERRED SILICON CLUSTERS STUDIED BY MEANS OF TIME-OF-FLIGHT METHOD. Acta Physica Sinica, 1991, 40(5): 703-708. doi: 10.7498/aps.40.703
    [20] LIU ZHEN-PENG. TRANSITION METAL ATOM CHEMISORPTION ON IONIC CRYSTALS. Acta Physica Sinica, 1988, 37(11): 1814-1822. doi: 10.7498/aps.37.1814
Metrics
  • Abstract views:  3605
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2022
  • Accepted Date:  03 February 2023
  • Available Online:  14 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回