-
Development of acoustic/magnetic contrast agent microbubbles with various diagnostic and therapeutic functions has attracted more and more attention in medical ultrasound, biomedical engineering and clinical applications. Superparamagnetic iron oxide nanoparticles (SPIO) have unique magnetic characteristics and wonderful biocompatibility, so they can be used as MRI contrast agents to improve image contrast, spatial resolution and diagnostic accuracy. Our previous work shows that the multimodal diagnostic and therapeutic microbubble agents can be successfully constructed by embedding SPIO particles into the coating shell of conventional ultrasound contrast agent (UCA) microbubbles, which in turn changes the size distribution and shell properties of UCA microbubbles, thereby affecting their acoustic scattering, cavitation and thermal effects. However, previous studies only considered the influence factors such as acoustic pressure and microbubble concentration. The relevant investigation regarding the influence of ultrasound temporal characteristics on the dynamic response of magnetic microbubbles is still lacking. This work systematically measures the temperature enhancement effect of the SPIO-albumin microbubble solution flowing in the vascular gel phantom exposed to pulsed ultrasound with various temporal settings (e.g. duty cycle, PRF and single pulse length). Meanwhile, a two-dimensional finite element model is developed to simulate and verify the experimental observations. The results show that the increase of duty cycle of pulse signal should be the crucial factor affecting the temperature enhancement effect of flowing SPIO-albumin microbubble solution under the exposure to high-intensity focused ultrasound. The current results help us to better understand the influence of different acoustic setting parameters on the thermal effect of dual-modal magnetic UCA microbubbles, and provide useful guidance for ensuring the safety and effectiveness of the application of SPIO-albumin microbubbles in clinics.
-
Keywords:
- superparamagnetic iron oxide /
- focused ultrasound /
- thermal effect /
- duty cycle
[1] 于洁, 郭霞生, 屠娟, 章东 2015 物理学报 64 094306Google Scholar
Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar
[2] Wang H L, Thorling C A, Liang X W, Bridle K R, Grice J E, Zhu Y A, Crawford D H G, Xu Z P, Liu X, Roberts M S 2015 J. Mater. Chem. B 3 939Google Scholar
[3] Niu C C, Wang Z G, Lu G M, Krupka T M, Sun Y, You Y F, Song W X, Ran H T, Li P, Zheng Y Y 2013 Biomaterials 34 2307Google Scholar
[4] Shin T H, Choi Y, Kim S, Cheon J 2015 Chem. Soc. Rev. 44 4501Google Scholar
[5] Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q X, Yue Y B, Gu N 2020 Theranostics 10 462Google Scholar
[6] Guo G P, Lu L, Yin L L, Tu J, Guo X S, Wu J, Xu D, Zhang D 2014 Phys. Med. Biol. 59 6729Google Scholar
[7] 赵丽霞, 王成会, 莫润阳 2021 物理学报 70 014301Google Scholar
Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar
[8] Tu J, Yu ACH 2022 BME Frontiers 2022 9807347
[9] Yang Y Y, Li Q, Guo X S, Tu J, Zhang D 2020 Ultrason. Sonochem. 67 105096Google Scholar
[10] Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar
[11] 郭各朴, 张春兵, 屠娟, 章东 2015 物理学报 64 114301Google Scholar
Guo G P, Zhang C B, Tu J, Zhang D 2015 Acta Phys. Sin. 64 114301Google Scholar
[12] Guo G P, Tu J, Guo X S, Huang P T, Wu J, Zhang D 2016 J. Biomech. 49 319Google Scholar
[13] Illing R O, Kennedy J E, Wu F, ter Haar G R, Protheroe A S, Friend P J, Gleeson F V, Cranston D W, Phillips R R, Middleton M R 2005 Br. J. Cancer 93 890Google Scholar
[14] Poissonnier L, Chapelon J Y, Rouvière O, Curiel L, Bouvier R, Martin X, Dubernard J M, Gelet A 2007 Eur. Urol. 51 381Google Scholar
[15] Hectors S J, Jacobs I, Heijman E, Keupp J, Berben M, Strijkers G J, Grüll H, Nicolay K 2015 NMR Biomed. 28 1125Google Scholar
[16] Kennedy J E 2005 Nat. Rev. Cancer 5 321Google Scholar
[17] Zhang L, Zhu H, Jin C B, Zhou K, Li K Q, Su H B, Chen W Z, Bai J, Wang Z B 2009 Eur. Radiol. 19 437Google Scholar
[18] Sboros V 2008 Adv. Drug Delivery Rev. 60 1117Google Scholar
[19] Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y 2005 Eur. Radiol. 15 1415Google Scholar
[20] Zhang S Y, Ding T, Wan M X, Jiang H J, Yang X, Zhong H, Wang S P 20 11 J. Acoust. Soc. Am. 129 2336
[21] Yang D X, Ni Z Y, Yang Y Y, Xu G Y, Tu J, Guo X S, Huang P T, Zhang D 2018 Ultrason. Sonochem. 49 111Google Scholar
[22] Lee Y S, Hmilton M F 1995 J. Acoust. Soc. Am. 97 906Google Scholar
[23] Pennes H H 1948 J. Appl. Physiol. 1 93Google Scholar
[24] Qian K, Li C H, Ni Z Y, Tu J, Guo X S, Zhang D 2017 Ultrasonics 77 38Google Scholar
[25] Tu J, Hwang J H, Fan T B, Guo X S, Crum L A, Zhang D 2012 Appl. Phys. Lett. 101 124102Google Scholar
[26] Holt R G, Roy R A 2001 Ultra. Med. Biol. 27 1399Google Scholar
[27] Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperthermia 23 105Google Scholar
[28] Razansky D, Einziger P D, Adam D R 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 137Google Scholar
-
图 4 实验装置示意图(凝胶中红色点表示测温针针尖位置, 垂直于纸面); 换能器焦点位于凝胶中聚酯管内, 测温针放置在管壁边缘
Figure 4. Schematic diagram of the experimental device (the red dot in the gel indicates the position of the tip of the temperature probe, which is perpendicular to the paper). The transducer focus is located in the polyester tube in the gel, and the temperature probe is placed on the edge of the tube wall.
表 1 模拟仿真计算中各区域材料参数设定
Table 1. Material parameter setting of each area in simulation calculation.
材料 水 凝胶 磁性微泡溶液 密度/(kg·m–3) 1000 1043 1006 声速/(m·s–1) 1486 1542 1550 声衰减系数/(dB·cm–1) 0.0022 0.1998 1.0000 比热容/(J·kg–1·K–1) 4500 3580 导热系数/(W·m–1·K–1) 0.6 0.5 -
[1] 于洁, 郭霞生, 屠娟, 章东 2015 物理学报 64 094306Google Scholar
Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar
[2] Wang H L, Thorling C A, Liang X W, Bridle K R, Grice J E, Zhu Y A, Crawford D H G, Xu Z P, Liu X, Roberts M S 2015 J. Mater. Chem. B 3 939Google Scholar
[3] Niu C C, Wang Z G, Lu G M, Krupka T M, Sun Y, You Y F, Song W X, Ran H T, Li P, Zheng Y Y 2013 Biomaterials 34 2307Google Scholar
[4] Shin T H, Choi Y, Kim S, Cheon J 2015 Chem. Soc. Rev. 44 4501Google Scholar
[5] Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q X, Yue Y B, Gu N 2020 Theranostics 10 462Google Scholar
[6] Guo G P, Lu L, Yin L L, Tu J, Guo X S, Wu J, Xu D, Zhang D 2014 Phys. Med. Biol. 59 6729Google Scholar
[7] 赵丽霞, 王成会, 莫润阳 2021 物理学报 70 014301Google Scholar
Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar
[8] Tu J, Yu ACH 2022 BME Frontiers 2022 9807347
[9] Yang Y Y, Li Q, Guo X S, Tu J, Zhang D 2020 Ultrason. Sonochem. 67 105096Google Scholar
[10] Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar
[11] 郭各朴, 张春兵, 屠娟, 章东 2015 物理学报 64 114301Google Scholar
Guo G P, Zhang C B, Tu J, Zhang D 2015 Acta Phys. Sin. 64 114301Google Scholar
[12] Guo G P, Tu J, Guo X S, Huang P T, Wu J, Zhang D 2016 J. Biomech. 49 319Google Scholar
[13] Illing R O, Kennedy J E, Wu F, ter Haar G R, Protheroe A S, Friend P J, Gleeson F V, Cranston D W, Phillips R R, Middleton M R 2005 Br. J. Cancer 93 890Google Scholar
[14] Poissonnier L, Chapelon J Y, Rouvière O, Curiel L, Bouvier R, Martin X, Dubernard J M, Gelet A 2007 Eur. Urol. 51 381Google Scholar
[15] Hectors S J, Jacobs I, Heijman E, Keupp J, Berben M, Strijkers G J, Grüll H, Nicolay K 2015 NMR Biomed. 28 1125Google Scholar
[16] Kennedy J E 2005 Nat. Rev. Cancer 5 321Google Scholar
[17] Zhang L, Zhu H, Jin C B, Zhou K, Li K Q, Su H B, Chen W Z, Bai J, Wang Z B 2009 Eur. Radiol. 19 437Google Scholar
[18] Sboros V 2008 Adv. Drug Delivery Rev. 60 1117Google Scholar
[19] Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y 2005 Eur. Radiol. 15 1415Google Scholar
[20] Zhang S Y, Ding T, Wan M X, Jiang H J, Yang X, Zhong H, Wang S P 20 11 J. Acoust. Soc. Am. 129 2336
[21] Yang D X, Ni Z Y, Yang Y Y, Xu G Y, Tu J, Guo X S, Huang P T, Zhang D 2018 Ultrason. Sonochem. 49 111Google Scholar
[22] Lee Y S, Hmilton M F 1995 J. Acoust. Soc. Am. 97 906Google Scholar
[23] Pennes H H 1948 J. Appl. Physiol. 1 93Google Scholar
[24] Qian K, Li C H, Ni Z Y, Tu J, Guo X S, Zhang D 2017 Ultrasonics 77 38Google Scholar
[25] Tu J, Hwang J H, Fan T B, Guo X S, Crum L A, Zhang D 2012 Appl. Phys. Lett. 101 124102Google Scholar
[26] Holt R G, Roy R A 2001 Ultra. Med. Biol. 27 1399Google Scholar
[27] Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperthermia 23 105Google Scholar
[28] Razansky D, Einziger P D, Adam D R 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 137Google Scholar
Catalog
Metrics
- Abstract views: 3899
- PDF Downloads: 62
- Cited By: 0