Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism and rule of microwave pulse response of two-stage PIN limiter

Gao Ming-Xuan Zhang Yang Zhang Jun

Citation:

Mechanism and rule of microwave pulse response of two-stage PIN limiter

Gao Ming-Xuan, Zhang Yang, Zhang Jun
PDF
HTML
Get Citation
  • This paper aims to analyze the failure mechanism of the two-stage PIN limiter after having been injected by a microwave pulse. A two-stage PIN limiter model with high computational efficiency and accuracy is built by using the method of field-circuit collaborative simulation. Using this model, the temperature change of the PIN diodes during the injection of microwave pulse is simulated. The melting temperature of the PIN diode is selected as the failure criterion of the PIN limiter. The time and energy required for the failure of the PIN limiter under injection of microwave pulses with different frequencies and amplitudes are simulated. Furthermore, the mechanisms that trigger off these effects are analyzed. The relationship between the microwave pulse parameters and the PIN limiter failure time is summarized by using an empirical formula.According to the simulation results, the temperature change of the second-stage PIN diode is relatively small compared with that of the first-stage. During the injection of the microwave pulse, the failure time and energy consumption of limiter show a certain regularity with the variation of microwave pulse amplitude and frequency, and this work discusses this regularity from the following three aspects. Firstly, the failure time and energy consumption decrease in a similar trend with frequency increasing. And with the increase in signal amplitude, the failure time and energy consumption tend to stabilize. Secondly, the increase in the signal amplitude leads failure time to decrease, which is similar to the relationship between failure time and the signal frequency mentioned before. But as the signal’s amplitude increases, the energy consumption first increases and then decreases slightly when the amplitude reaches about 900 V. Based on the theoretical analysis and the physical image of the two-stage PIN limiter, the reasons for these effects can be explained as the changes in the I-region's impedance and heat distribution change caused by electric field changes. Thirdly, the failure time and energy consumption show different sensitivities to different parameters of the microwave pulse. The signal frequency change has greater influence on the energy consumption than the signal amplitude change, while the amplitude change can exert a greater influence on the failure time than the frequency change.
      Corresponding author: Zhang Yang, 16103271g@connect.polyu.hk
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40675), the Science and Technology Innovation Plan of Hunan Province, China (Grant No. 2021RC2065), and the Scientific Research Plan of National University of Defense Technology, China (Grant No. ZK22-42).
    [1]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174Google Scholar

    [2]

    Zhang C B, Zhang J D, Wang H G, Du G X 2015 Microelectron. Reliab. 55 508Google Scholar

    [3]

    Li H, Chai C C, Liu Y Q, Wu H, Yang Y T 2018 Chin. Phys. B 27 088502Google Scholar

    [4]

    Zhang C B, Zhang J D, Wang H G, Du G X 2016 Microelectron. Reliab. 60 41Google Scholar

    [5]

    Zhou L, Chen X, Peng H L, Yin W Y, Mao J F 2018 IEEE Trans. Electromagn. Cmpat. 60 1427Google Scholar

    [6]

    Zhou L, Zhang S, Yin W Y, Mao J F 2016 IEEE Trans. Electromagn. Compat. 58 487Google Scholar

    [7]

    赵振国, 马弘舸, 王艳 2012 微波学报 28 297Google Scholar

    Zhao Z G, Ma H G, Wang Y 2012 J. Microwaves 28 297Google Scholar

    [8]

    Zhang C B, Wang H G, Zhang J D, Du G X, Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545Google Scholar

    [9]

    Hampel G, Kolodner P, Gammel P L, Polakos P A, Obaldia E D, Mankiewich P M, Anderson A, Slattery R, Zhang D, Liang G C, Shih C F 1996 Appl. Phys. Lett. 69 571Google Scholar

    [10]

    Liu Y, Chai C C, Fan Q Y, Shi C L, Xi X W, Yu X H, Yang Y T 2016 Microelectron. Reliab. 66 32Google Scholar

    [11]

    马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 物理学报 61 078501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501Google Scholar

    [12]

    马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾 2013 物理学报 62 128501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 128501Google Scholar

    [13]

    任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍 2013 物理学报 62 068501Google Scholar

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P 2013 Acta Phys. Sin. 62 068501Google Scholar

    [14]

    刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北 2016 物理学报 65 038402Google Scholar

    Liu Y, Chai C C, Yu X H, Fan Q Y, Yang Y T, Xi X W, Liu S B 2016 Acta Phys. Sin. 65 038402Google Scholar

    [15]

    张永战, 孟凡宝, 赵刚 2017 强激光与粒子束 29 093002Google Scholar

    Zhang Y Z, Meng F B, Zhao G 2017 High Power Laser Part. Beams 29 093002Google Scholar

    [16]

    周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 783

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 783

    [17]

    戚玉佳, 李永东, 郝勇, 王洪广, 李平, 刘纯亮 2014 微波学报 30 220Google Scholar

    Qi Y J, Li Y D, Hao Y, Wang H G, Li P, Liu C L 2014 J. Microwaves 30 220Google Scholar

    [18]

    李勇, 宣春, 谢海燕, 夏洪富, 王建国 2013 强激光与粒子束 25 2061Google Scholar

    Li Y, Yi C, Xie H Y, Xia H F, Wang J G 2013 High Power Laser Part. Beams 25 2061Google Scholar

    [19]

    胡凯, 李天明, 汪海洋, 周翼鸿 2014 强激光与粒子束 26 063015Google Scholar

    Hu K, Li T M, Wang H Y, Zhou Y H 2014 High Power Laser Part. Beams 26 063015Google Scholar

    [20]

    易世鹏, 杜正伟, 赵景涛, 赵刚 2019 电波科学学报 34 479Google Scholar

    Yi S P, Du Z W, Zhao J T, Zhao G 2019 Chin. J. Radio Sci. 34 479Google Scholar

    [21]

    王明, 马弘舸 2018 强激光与粒子束 30 063002Google Scholar

    Wang M, Ma H G 2018 High Power Laser Part. Beams 30 063002Google Scholar

    [22]

    赵振国, 马弘舸, 赵刚, 王艳, 钟龙权 2013 强激光与粒子束 25 1741Google Scholar

    Zhao Z G, Ma H G, Zhao G, Wang Y, Zhong L Q 2013 High Power Laser Part. Beams 25 1741Google Scholar

    [23]

    Susanna R, Marina V, Luigi C, Massimo R, Giorgio B, Andreas D S, Fridolin I, Norbert F, Wolfgang F, Lucia Z 2002 IEEE. Trans. Electron. Devices 49 490Google Scholar

    [24]

    Canali C, Majni G, Minder R, Ottaviani G 1975 IEEE. Trans. Electron. Devices 22 1045Google Scholar

    [25]

    Leenov D 1964 IEEE. Trans. Electron. Devices 11 53Google Scholar

  • 图 1  双级PIN限幅器场路协同仿真模型的整体结构及求解过程示意图

    Figure 1.  Frame of the field-circuit collaborative simulation model and the sketch map of its solution procedure.

    图 2  PIN二极管的结构模型及掺杂浓度分布 (a) D1结构模型; (b) D1 掺杂浓度分布; (c) D2结构模型; (d) D2 掺杂浓度分布

    Figure 2.  Structure model and doping concentration of each PIN diodes: (a) Structure model of D1; (b) doping concentration distribution of D1; (c) structure model of D2; (d) doping concentration distribution of D2.

    图 3  限幅器输入-输出特性

    Figure 3.  I-O characteristic of the limiter.

    图 4  (a) D1与(b) D2内部最高温度变化情况

    Figure 4.  Change of the maximum temperature inside D1 (a) and D2 (b).

    图 5  限幅器在不同幅值信号作用下发生熔化现象时所消耗的时间与能量

    Figure 5.  Time and energy consumption of the limiter when melting occurs under different amplitude signals.

    图 6  不同幅值信号作用下D1在发生熔化现象时的温度分布情况

    Figure 6.  Temperature distribution of D1 under signals with different amplitude at the moment of melting occurs

    图 7  不同幅值信号作用下D1在发生熔化现象时的电场强度分布情况

    Figure 7.  Electric field distribution of D1 under signals with different amplitude at the moment of melting occurs.

    图 8  限幅器在不同频率信号作用下发生熔化现象时所消耗的时间与能量

    Figure 8.  Time and energy consumption of the limiter when melting occurs under different frequency signals.

    图 9  限幅器内部发生熔化现象所需时间、能量与信号频率及幅值的关系 (a) 时间消耗; (b) 能量消耗

    Figure 9.  Relationship of time and energy consumption to the signal’s frequency and amplitude when melting occurs: (a) Time consumption; (b) energy consumption.

    图 10  经验方程计算结果与实际仿真结果对比图

    Figure 10.  Comparison between empirical equation calculation results and actual simulation results

    表 A1  UniBo模型相关参数

    Table A1.  Parameters related to UniBo model

    参数 电子(P) 空穴(B)
    ${\mu _{\max }}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 1441 470.5
    $c$ –0.11 0
    $\gamma $ 2.45 2.16
    ${\mu _{0 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 62.2${T_n}^{{{ - }}{\gamma _{{0}d}}}$ 90.0$ {T_n}^{{{ - }}{\gamma _{{0}d}}} $
    ${\gamma _{0 d}}$ 0.7 1.3
    ${\mu _{1 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 48.6${T_n}^{{{ - }}{\gamma _{{1}d}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}d}}}$
    ${\gamma _{1 d}}$ 0.7 2.0
    ${\mu _{1 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 73.5${T_n}^{{{ - }}{\gamma _{{1}a}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}a}}}$
    ${\gamma _{1 a}}$ 1.25 0.8
    ${C_{r1}}$/cm–3 $8.5 \times {10^{16}} {T_n}^{{\gamma _{r1}}}$ $1.3 \times {10^{18}} {T_n}^{{\gamma _{r{1}}}}$
    ${\gamma _{r1}}$ 3.65 2.2
    ${C_{r2}}$/cm–3 $1.22 \times {10^{17}} {T_n}^{{\gamma _{r2}}}$ $2.45 \times {10^{17}} {T_n}^{{\gamma _{r{2}}}}$
    ${\gamma _{r2}}$ 2.65 3.1
    ${C_{s1}}$/cm–3 $4.0 \times {10^{20}} {T_n}^{{\gamma _{s{1}}}}$ $1.1 \times {10^{18}} {T_n}^{{\gamma _{s{1}}}}$
    ${\gamma _{s1}}$ 0 6.2
    ${C_{s2}}$/(1020 cm–3) $7.0$ $6.1$
    $\alpha $ 0.68 0.77
    $\beta $ 0.72 0.719
    ${\mu _{0 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 132.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$ 44.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$
    ${\gamma _{0 a}}$ 1.3 0.7
    DownLoad: CSV

    表 A2  Conwell-Weisskopf模型相关参数

    Table A2.  Parameters related to Conwell-Weisskopf model

    参数
    $D$/(cm–1·V–1·s–1)$1.04 \times {10^{21}}$
    $F$/cm–2$7.452 \times {10^{13}}$
    DownLoad: CSV

    表 A3  ${v_{{\text{sat}}}}$相关计算参数

    Table A3.  Parameters related to the calculation of ${v_{{\text{sat}}}}$

    参数电子空穴
    ${v_{{\text{sat, 0}}}}$/(107 cm·s–1)$1.07$$0.837$
    $ {v_{{\text{sat}}, \exp }} $0.870.52
    DownLoad: CSV

    表 A4  Canali模型相关参数

    Table A4.  Parameters related to Canali model

    参数电子空穴
    ${\beta _0}$1.1091.213
    ${\beta _{\exp }}$0.660.17
    DownLoad: CSV

    表 A5  SRH复合模型相关参数

    Table A5.  Parameters related to SRH Recombination model

    参数 电子 空穴
    ${\tau _{\min }}$/s 0 0
    ${\tau _{\max }}$/μs $10$ $3$
    ${\tau _0}$/μs $10$ $3$
    ${N_{{\text{ref}}}}$/(1016 cm–3) $1$ $1$
    $\gamma $ 1 1
    ${T_{\text{α }}}$ –1.5 –1.5
    ${E_{{\text{trap}}}}$/eV 0 0
    DownLoad: CSV

    表 A6  俄歇复合模型相关参数

    Table A6.  Parameters related to Auger recombination model

    参数电子空穴
    ${A_{\text{A}}}$/(10–32 cm6·s–1)$6.7$$7.2$
    ${B_{\text{A}}}$/(10–33 cm6·s–1)$245$$4.5$
    ${C_{\text{A}}}$/(10–33 cm6·s–1)$ - 2.2$$2.63$
    $H$3.466678.25688
    ${N_0}$/(1018 cm–3)$1$$1$
    DownLoad: CSV

    表 A7  雪崩模型相关参数

    Table A7.  Parameters related to avalanche model

    参数 电子 空穴
    ${a_0}$/V 4.65403 2.26018
    ${a_1}$/mV $ - 8.76031$ 13.4001
    ${a_2}$/μV $13.4037$ $ - 5.87724$
    ${a_3}$/nV $ - 2.75108$ $ - 1.14021$
    ${b_0}$/V –0.128302 0.058547
    ${b_1}$/(10–4 V) $44.5552$ $ - 1.95755$
    ${b_2}$/(10–7 V) $ - 108.66$ $2.44357$
    ${b_3}$/(10–10 V) $92.3119$ $ - 1.33202$
    ${b_4}$/(10–14 V) $ - 182.482$ $2.68082$
    ${b_5}$/V $ - 4.82689 \times {10^{ - 15}}$ 0
    ${b_6}$/V $1.09402 \times {10^{ - 17}}$ 0
    ${b_7}$/V $ - 1.24961 \times {10^{ - 20}}$ 0
    ${b_8}$/V $7.55584 \times {10^{ - 24}}$ 0
    ${b_9}$/V $ - 2.28615 \times {10^{ - 27}}$ 0
    ${b_{10}}$/V $2.73344 \times {10^{ - 31}}$ 0
    ${c_0}$/(103 V·cm–1) $7.76221$ $19.5399$
    ${c_1}$/(V·cm–1) 25.18888 –104.441
    ${c_2}$/(V·cm–1) $ - 1.37417 \times {10^{ - 3}}$ 0.498768
    ${c_3}$/(V·cm–1) $1.59525 \times {10^{ - 4}}$ 0
    ${d_0}$/(105 V·cm–1) $7.10481$ $20.7712$
    ${d_1}$/(103 V·cm–1) $3.98594$ 0.993153
    ${d_2}$/(V·cm–1) –7.19956 7.77769
    ${d_3}$/(V·cm–1) $6.96431 \times {10^{ - 3}}$ 0
    DownLoad: CSV
  • [1]

    Yu X H, Chai C C, Liu Y, Yang Y T, Fan Q Y 2015 Microelectron. Reliab. 55 1174Google Scholar

    [2]

    Zhang C B, Zhang J D, Wang H G, Du G X 2015 Microelectron. Reliab. 55 508Google Scholar

    [3]

    Li H, Chai C C, Liu Y Q, Wu H, Yang Y T 2018 Chin. Phys. B 27 088502Google Scholar

    [4]

    Zhang C B, Zhang J D, Wang H G, Du G X 2016 Microelectron. Reliab. 60 41Google Scholar

    [5]

    Zhou L, Chen X, Peng H L, Yin W Y, Mao J F 2018 IEEE Trans. Electromagn. Cmpat. 60 1427Google Scholar

    [6]

    Zhou L, Zhang S, Yin W Y, Mao J F 2016 IEEE Trans. Electromagn. Compat. 58 487Google Scholar

    [7]

    赵振国, 马弘舸, 王艳 2012 微波学报 28 297Google Scholar

    Zhao Z G, Ma H G, Wang Y 2012 J. Microwaves 28 297Google Scholar

    [8]

    Zhang C B, Wang H G, Zhang J D, Du G X, Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545Google Scholar

    [9]

    Hampel G, Kolodner P, Gammel P L, Polakos P A, Obaldia E D, Mankiewich P M, Anderson A, Slattery R, Zhang D, Liang G C, Shih C F 1996 Appl. Phys. Lett. 69 571Google Scholar

    [10]

    Liu Y, Chai C C, Fan Q Y, Shi C L, Xi X W, Yu X H, Yang Y T 2016 Microelectron. Reliab. 66 32Google Scholar

    [11]

    马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌 2012 物理学报 61 078501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B 2012 Acta Phys. Sin. 61 078501Google Scholar

    [12]

    马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾 2013 物理学报 62 128501Google Scholar

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Qiao L P, Shi C L 2013 Acta Phys. Sin. 62 128501Google Scholar

    [13]

    任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍 2013 物理学报 62 068501Google Scholar

    Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P 2013 Acta Phys. Sin. 62 068501Google Scholar

    [14]

    刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北 2016 物理学报 65 038402Google Scholar

    Liu Y, Chai C C, Yu X H, Fan Q Y, Yang Y T, Xi X W, Liu S B 2016 Acta Phys. Sin. 65 038402Google Scholar

    [15]

    张永战, 孟凡宝, 赵刚 2017 强激光与粒子束 29 093002Google Scholar

    Zhang Y Z, Meng F B, Zhao G 2017 High Power Laser Part. Beams 29 093002Google Scholar

    [16]

    周怀安, 杜正伟, 龚克 2005 强激光与粒子束 17 783

    Zhou H A, Du Z W, Gong K 2005 High Power Laser Part. Beams 17 783

    [17]

    戚玉佳, 李永东, 郝勇, 王洪广, 李平, 刘纯亮 2014 微波学报 30 220Google Scholar

    Qi Y J, Li Y D, Hao Y, Wang H G, Li P, Liu C L 2014 J. Microwaves 30 220Google Scholar

    [18]

    李勇, 宣春, 谢海燕, 夏洪富, 王建国 2013 强激光与粒子束 25 2061Google Scholar

    Li Y, Yi C, Xie H Y, Xia H F, Wang J G 2013 High Power Laser Part. Beams 25 2061Google Scholar

    [19]

    胡凯, 李天明, 汪海洋, 周翼鸿 2014 强激光与粒子束 26 063015Google Scholar

    Hu K, Li T M, Wang H Y, Zhou Y H 2014 High Power Laser Part. Beams 26 063015Google Scholar

    [20]

    易世鹏, 杜正伟, 赵景涛, 赵刚 2019 电波科学学报 34 479Google Scholar

    Yi S P, Du Z W, Zhao J T, Zhao G 2019 Chin. J. Radio Sci. 34 479Google Scholar

    [21]

    王明, 马弘舸 2018 强激光与粒子束 30 063002Google Scholar

    Wang M, Ma H G 2018 High Power Laser Part. Beams 30 063002Google Scholar

    [22]

    赵振国, 马弘舸, 赵刚, 王艳, 钟龙权 2013 强激光与粒子束 25 1741Google Scholar

    Zhao Z G, Ma H G, Zhao G, Wang Y, Zhong L Q 2013 High Power Laser Part. Beams 25 1741Google Scholar

    [23]

    Susanna R, Marina V, Luigi C, Massimo R, Giorgio B, Andreas D S, Fridolin I, Norbert F, Wolfgang F, Lucia Z 2002 IEEE. Trans. Electron. Devices 49 490Google Scholar

    [24]

    Canali C, Majni G, Minder R, Ottaviani G 1975 IEEE. Trans. Electron. Devices 22 1045Google Scholar

    [25]

    Leenov D 1964 IEEE. Trans. Electron. Devices 11 53Google Scholar

  • [1] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] Zhang Mei-Mei, Wu Yi-Yun, Yu Jie, Tu Juan, Zhang Dong. Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles. Acta Physica Sinica, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [5] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [7] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [8] Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan. A parameter inversion method of film based on thermal effects induced by laser irradiation. Acta Physica Sinica, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [9] Huang Wen-Fa, Li Xue-Chun, Wang Jiang-Feng, Lu Xing-Hua, Zhang Yu-Qi, Fan Wei, Lin Zun-Qi. Theoretical and experimental investigations on wavefront distortion and thermal-stress induced birefringence in a laser diode pumped helium gas-cooled multislab Nd:glass laser amplifier. Acta Physica Sinica, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [10] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [11] Zhou Ying, Dai Yu, Yao Shu-Na, Liu Jun, Chen Jia-Bin, Chen Shu-Fen, Xin Jian-Guo. Three-dimensional thermal effects of the diode-pumped Nd:YVO4 slab. Acta Physica Sinica, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [12] Hu Miao, Zhang Hui, Zhang Fei, Liu Chen-Xi, Xu Guo-Rui, Deng Jing, Huang Qian-Feng. Thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave. Acta Physica Sinica, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [13] Liu Hai-Qiang, Guo Zhen, Wang Shi-Yu, Lin Lin, Guo Long-Cheng, Li Bing-Bin, Cai De-Fang. Research on thermal contact conductance between crystal rod and heat sink in LD end-pumped solid-state laser. Acta Physica Sinica, 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [14] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [16] Dong Hao, Ren Min, Zhang Lei, Deng Ning, Chen Pei-Yi. Thermal effect in current induced magnetic switching. Acta Physica Sinica, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [17] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [18] Wang Li-Shi, Pan Chun-Xu, Cai Qi-Zhou, Wei Bo-Kang. Study of the heat effect of single steady-state microdischarge during plasma electrolytic oxidation. Acta Physica Sinica, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [19] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [20] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
Metrics
  • Abstract views:  2164
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2023
  • Accepted Date:  25 November 2023
  • Available Online:  04 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回