Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient

Wang Ji-Guang Li Long-Ling Qiu Jia-Tu Chen Xu-Min Cao Dong-Xing

Citation:

Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient

Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing
PDF
HTML
Get Citation
  • The superlattices composed of polar/polar perovskites have two-dimensional electron gas (2DEG) at the interface, which has broad applications in nano devices, super sensitive sensor devices, high electron mobility transistor, etc. Tuning the electronic properties of the 2DEG at the interface perovskite superlattice, such as the coupling between strain gradient and the electronic properties of the 2DEG in correlated electronic systems, is of great significance. In this paper, the properties of (LaAlO3)4.5/(KNbO3)8.5 superlattice, which is composed of KNbO3 and LaAlO3, are systematically investigated through first-principles density functional theory calculations. The band structure of (LaAlO3)4.5/(KNbO3)8.5 superlattice exhibits 2DEG at the interface, which is consistent with the result in the literature. The band structure, density of states, magnetic moments and carrier concentration at the interface are fully investigated by using compressive gradient and tensile strain gradient, respectively. The results show that compressive strain gradient can effectively reduce the 2DEG concentration at the interface. When the compressive strain gradient coefficient reaches 12%, the 2DEG concentration decreases by 76.4%, and the interface magnetic moment disappears. The total magnetic moment of the superlattice decreases by 88.44%. When the tensile strain gradient is 12%, the electron gas concentration at the interface is increased by about 23.9%, and the interface magnetic moment is reduced by about 90.7%. At the same time, an obvious magnetic moment appears in the layer near the interface. Hence, the strain gradient can be a new approach to regulating the electron gas concentration at interface of perovskite superlattice. The tensile strain gradient increases the electron gas concentration at the interface, while the compressive strain gradient reduces the electron gas concentration. Therefore, it opens up a new way to exploring the regulation of high-performance spin polarized carrier gas at the oxide interface.
      Corresponding author: Chen Xu-Min, 41790@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874011, 11972051).
    [1]

    Tra V T, Chen J W, Huang P C, et al. 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, et al. 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, et al. 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 物理学报 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [8]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [9]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J, Ariando, Gruverman A 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [10]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [11]

    Phillips L J, Rashed A M, Treharne R E, et al. 2016 Sol. Energy Mater. Sol. Cells 147 327Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [13]

    Zhao Y, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490Google Scholar

    [14]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [15]

    Brinkman A, Huijben M, Van Zalk M, et al. 2007 Nat. Mater. 6 493Google Scholar

    [16]

    Kalisky B, Bert J A, Bell C, Xie Y, Sato H K, Hosoda M, Hikita Y, Hwang H Y, Moler K A 2012 Nano Lett. 12 4055Google Scholar

    [17]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [18]

    Guduru V K, del Aguila A G, Wenderich S, et al. 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [19]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [20]

    Au K, Li D F, Chan N Y, Dai J Y 2012 Adv. Mater. 24 2598Google Scholar

    [21]

    Bark C W, Felker D A, Wang Y, et al. 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4720Google Scholar

    [22]

    Salluzzo M, Gariglio S, Stornaiuolo D, et al. 2013 Phys. Rev. Lett. 111 087204Google Scholar

    [23]

    Schoofs F, Carpenter M A, Vickers M E, et al. 2013 J. Phys. Condes. Matter 25 175005Google Scholar

    [24]

    Huang Z, Liu Z Q, Yang M, et al. 2014 Phys. Rev. B 90 125156Google Scholar

    [25]

    Du Y, Wang C, Li J, Zhang X, Wang F, Zhu Y, Yin N, Mei L 2015 Comput. Mater. Sci. 99 57Google Scholar

    [26]

    Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F, Shen Z X 2011 Nat. Mater. 10 114Google Scholar

    [27]

    Fang L, Chen C, Yang Y, Wu Y, Hu T, Zhao G, Zhu Q, Ren W 2019 Phys. Chem. Chem. Phys. 21 8046Google Scholar

    [28]

    Zhang Z, Jiang W, Liu K, Liu M, Meng J, Wu L, Shao T, Ling J, Yao C, Xiong C, Dou R, Nie J 2020 Ann. Phys. Berlin 532 2000155Google Scholar

    [29]

    Cooper V R 2012 Phys. Rev. B 85 235109Google Scholar

    [30]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106Google Scholar

    [31]

    Shu L, Wei X, Jin L, Li Y, Wang H, Yao X 2013 Appl. Phys. Lett. 102 152904Google Scholar

    [32]

    Nystrom M J, Wessels B W, Chen J, Marks T J 1996 Appl. Phys. Lett. 68 761Google Scholar

  • 图 1  (a) (LaAlO3)4.5/(KNbO3)8.5晶胞模型; (b)压缩非均匀应变原子偏移示意图; (c)拉伸非均匀应变原子偏移示意图, 箭头大小表示偏离平衡位置的程度

    Figure 1.  (a) The (LAO)4.5/(KNO)8.5 superlattice model; (b) schematic diagram of atomic shift in compressed non-uniform strain; (c) schematic diagram of atomic migration under non-uniform tensile strain. Arrow size indicates the degree of deviation from the balance position.

    图 2  LAO/KNO的界面附近各层的投影态密度及界面附近的电荷差分密度图

    Figure 2.  The layer resolved DOS LAO/KNO with the Fermi level is set to zero, and the charge difference density diagram near the interface.

    图 3  不同最大压缩应变梯度系数下NbO2/LaO界面层及其附近的态密度 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%

    Figure 3.  Density of state of NbO2/LaO interface layer and its adjacent layer under different maximum compressive strain gradients coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 4  不同最大压缩应变梯度系数下LAO/KNO的能带图及界面Nb元素dxy的轨道投影能带 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%

    Figure 4.  The band structures of LAO/KNO and projected band structures of interface with orbit of Nb element dxy under different maximum compressive strain gradient coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $ \varepsilon_{\max}$ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 5  不同最大拉伸应变梯度系数下NbO2/LaO界面层及其附近的态密度 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ =3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ =12%

    Figure 5.  Density of state of NbO2/LaO interface layer and its adjacent layer under different maximum tensile strain gradient coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 6  不同最大拉伸应变梯度系数下LAO/KNO的能带图及界面Nb元素的dxy轨道的投影能带 (a) $\varepsilon_{\max} $ = 3%; (b) $\varepsilon_{\max} $ = 5%; (c) $\varepsilon_{\max} $ = 8%; (d) $\varepsilon_{\max} $ = 10%

    Figure 6.  The band structures of LAO/KNO and projected band structures of interface with orbit of Nb element dxy under different maximum tensile strain gradient coefficient: (a) $\varepsilon_{\max} $ = 3 %; (b) $\varepsilon_{\max} $ = 5%; (c) $\varepsilon_{\max} $ = 8%; (d) $\varepsilon_{\max} $ = 10%.

    图 7  施加拉伸和压缩应变梯度时不同界面的磁矩和体系总磁矩

    Figure 7.  The change of interface magnetic moment with the strength of strain gradient when the compressive and tensile strain gradients are applied.

    图 8  施加压缩(深色区域)和拉伸应变梯度时, 界面二维电子气密度随应变梯度强度的变化

    Figure 8.  The 2 DEG density of the interface changes with the strength of the strain gradient when the compressive (shadow region) and tensile strain gradients are applied.

  • [1]

    Tra V T, Chen J W, Huang P C, et al. 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, et al. 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, et al. 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 物理学报 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [8]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [9]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J, Ariando, Gruverman A 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [10]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [11]

    Phillips L J, Rashed A M, Treharne R E, et al. 2016 Sol. Energy Mater. Sol. Cells 147 327Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [13]

    Zhao Y, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490Google Scholar

    [14]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [15]

    Brinkman A, Huijben M, Van Zalk M, et al. 2007 Nat. Mater. 6 493Google Scholar

    [16]

    Kalisky B, Bert J A, Bell C, Xie Y, Sato H K, Hosoda M, Hikita Y, Hwang H Y, Moler K A 2012 Nano Lett. 12 4055Google Scholar

    [17]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [18]

    Guduru V K, del Aguila A G, Wenderich S, et al. 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [19]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [20]

    Au K, Li D F, Chan N Y, Dai J Y 2012 Adv. Mater. 24 2598Google Scholar

    [21]

    Bark C W, Felker D A, Wang Y, et al. 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4720Google Scholar

    [22]

    Salluzzo M, Gariglio S, Stornaiuolo D, et al. 2013 Phys. Rev. Lett. 111 087204Google Scholar

    [23]

    Schoofs F, Carpenter M A, Vickers M E, et al. 2013 J. Phys. Condes. Matter 25 175005Google Scholar

    [24]

    Huang Z, Liu Z Q, Yang M, et al. 2014 Phys. Rev. B 90 125156Google Scholar

    [25]

    Du Y, Wang C, Li J, Zhang X, Wang F, Zhu Y, Yin N, Mei L 2015 Comput. Mater. Sci. 99 57Google Scholar

    [26]

    Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F, Shen Z X 2011 Nat. Mater. 10 114Google Scholar

    [27]

    Fang L, Chen C, Yang Y, Wu Y, Hu T, Zhao G, Zhu Q, Ren W 2019 Phys. Chem. Chem. Phys. 21 8046Google Scholar

    [28]

    Zhang Z, Jiang W, Liu K, Liu M, Meng J, Wu L, Shao T, Ling J, Yao C, Xiong C, Dou R, Nie J 2020 Ann. Phys. Berlin 532 2000155Google Scholar

    [29]

    Cooper V R 2012 Phys. Rev. B 85 235109Google Scholar

    [30]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106Google Scholar

    [31]

    Shu L, Wei X, Jin L, Li Y, Wang H, Yao X 2013 Appl. Phys. Lett. 102 152904Google Scholar

    [32]

    Nystrom M J, Wessels B W, Chen J, Marks T J 1996 Appl. Phys. Lett. 68 761Google Scholar

  • [1] Cao Wen-Yu, Zhang Ya-Ting, Wei Yan-Feng, Zhu Li-Juan, Xu Ke, Yan Jia-Sheng, Zhou Shu-Xing, Hu Xiao-Dong. Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well. Acta Physica Sinica, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [4] Rao Xue, Wang Ru-Zhi, Cao Jue-Xian, Yan Hui. First-principles calculation of doped GaN/AlN superlattices. Acta Physica Sinica, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [5] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [6] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [7] Luo Xiao-Hua. General solution of Schrödinger equation and electron transition in superlattice multi-quantum well. Acta Physica Sinica, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [8] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] Luo Xiao-Hua, He Wei, Wu Mu-Ying, Luo Shi-Yu. Quasi-periodic excitation and dynamic stability for strained superlattice. Acta Physica Sinica, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [10] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [12] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [13] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [14] Jiang Lei, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Lu Yao, Zhang Guo-Lian. Electronic structure and optical properties of Cr doped SnO2 superlattice. Acta Physica Sinica, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [15] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. First-principles investigation of carrier Auger lifetime and impact ionization rate in narrow-gap superlattices. Acta Physica Sinica, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [16] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [17] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [18] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Chen Ke-Qiu. The localized electronic states and transmission spectra in N-layer superlattice with structural defects in finite magnetic fields. Acta Physica Sinica, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] CHENG XING-KUI, ZHOU JUN-MING, HUANG QI. WAVING OF ELECTRON IN SUPERLATTICE. Acta Physica Sinica, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
Metrics
  • Abstract views:  3514
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2023
  • Accepted Date:  22 May 2023
  • Available Online:  06 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回