Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of germanium selenide heterojunction solar cell

Xiao You-Peng Wang Huai-Ping Feng Lin

Citation:

Numerical simulation of germanium selenide heterojunction solar cell

Xiao You-Peng, Wang Huai-Ping, Feng Lin
PDF
HTML
Get Citation
  • One of the research hotspots in thin film solar cell technology is to seek the suitable absorber layer materials to replace cadmium telluride and copper indium gallium selenium. Recently, germanium selenide (GeSe) with excellent photoelectric property has entered the field of vision of photovoltaic researchers. The main factors affecting the performance of heterojunction solar cell are the material properties of each functional layer, the device configuration, and the interface characteristics at the heterostructure. In this study, we utilize GeSe as the absorber layer, and assemble it with stable TiO2 as electron transport layer and with Cu2O as hole transport layer, respectively, into a heterojunction solar cell with the FTO/TiO2/GeSe/Cu2O/Metal structure. The TiO2 and Cu2O can form small spike-like conduction band offset and valence band offset with the absorber layer, respectively, which do not hinder majority carrier transport but can effectively suppress carrier recombination at the heterointerface. Subsequently, the wxAMPS software is used to simulate and analyze the effects of functional layer material parameters, heterointerface characteristics, and operating temperature on the performance parameters of the proposed solar cell. Considering the practical application, the relevant material parameters are selected carefully. After being optimized at 300 K, the proposed GeSe heterojunction solar cell can reach an open circuit voltage of 0.752 V, a short circuit current of 40.71 mA·cm–2, a filling factor of 82.89%, and a conversion efficiency of 25.39%. It is anticipated from the results that the GeSe based heterojunction solar cell with a structure of FTO/TiO2/GeSe/Cu2O/Au has the potential to become a high-efficiency, low toxicity, and low-cost photovoltaic device. Simulation analysis also provides some references for designing and preparing the heterojunction solar cells.
      Corresponding author: Xiao You-Peng, xiaoypnc@ecut.edu.cn
    • Funds: Project supported by the East China University of Technology Research Foundation for Advanced Talents, China (Grant No. DHBK2019170) and the Key Research and Development Project of Department of Science and Technology of Jiangxi Province, China (Grant No. 20203BBE53030).
    [1]

    Lee T D, Ebong A U 2017 Renewable Sustainable Energy Rev. 70 1286Google Scholar

    [2]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Ho-Baillie A W Y 2018 Prog. Photovoltaics Res. Appl. 26 427Google Scholar

    [3]

    刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801Google Scholar

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801Google Scholar

    [4]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [5]

    Yang W, Zhang X, Tilley S D 2021 Chem. Mater. 33 3467Google Scholar

    [6]

    Liu S C, Yang Y, Li Z B, Xue D J, Hu J S 2020 Mater. Chem. Front. 4 775Google Scholar

    [7]

    Li K, Tang J 2021 Sci. China, Ser. B Chem. 64 1605Google Scholar

    [8]

    闫彬, 薛丁江, 胡劲松 2022 化学学报 80 797Google Scholar

    Yan B, Xue D J, Hu J S 2022 Acta Chim. Sin. 80 797Google Scholar

    [9]

    Zi W, Mu F, Lu X M, Cao Y, Xie Y P, Fang L, Cheng N, Zhao Z Q, Xiao Z Y 2020 Sol. Energy 199 837Google Scholar

    [10]

    Xu D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [11]

    Chen B W, Chen G L, Wang W H, Cai H L, Yao L Q, Chen S Y, Huang Z G 2018 Sol. Energy 176 98Google Scholar

    [12]

    Chen B W, Ruan Y R, Li J M, Wang W H, Liu X L, Cai H L, Yao L Q, Zhang J M, Chen S Y, Chen G Y, Chen G L 2019 Nanoscale 11 3968Google Scholar

    [13]

    Wu J M, Lü Y P, Wu H, Zhang H S, Wang F, Zhang J, Wang J Z, Xu X H 2022 Rare Met. 41 2992Google Scholar

    [14]

    Liu S C, Li Z B, Wu J P, Zhang X, Feng M J, Xue D J, Hu J S 2021 Sci. China Mater. 64 2118Google Scholar

    [15]

    Liu S C, Dai C M, Min Y M, Hou Y, Proppe A H, Zhou Y, Chen C, Chen S Y, Tang J, Xue D J, Sargent E H, Hu J S 2021 Nat. Commun. 12 670Google Scholar

    [16]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [17]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [18]

    肖友鹏, 王怀平, 李刚龙 2021 物理学报 70 018801Google Scholar

    Xiao Y P, Wang H P, Li G L 2021 Acta Phys. Sin. 70 018801Google Scholar

    [19]

    肖友鹏, 王怀平 2022 光学学报 42 2331002Google Scholar

    Xiao Y P, Wang H P 2022 Acta Opt. Sin. 42 2331002Google Scholar

    [20]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [21]

    Ahmed S R A, Sunny A, Rahman S 2021 Sol. Energy Mater. Sol. Cells 221 110919Google Scholar

    [22]

    Huang L K, Sun X X, Li C, Xu R, Xu J, Du Y Y, Wu Y X, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 157 1038Google Scholar

    [23]

    Rai S, Pandey B K, Dwivedi D K 2020 Opt. Mater. 100 109631

    [24]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [25]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [26]

    Mohammadi M H, Fathi D, Eskandari M 2020 Sol. Energy 204 200Google Scholar

    [27]

    Lin L, Jiang L, Li P, Fan B, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [28]

    Raoui Y, Ez-Zahraouy H, Tahiri N, Bounagui O E, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [29]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [30]

    Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [31]

    Ali M H, Mamun M A A, Haque M D, Rahman M F, Hossain M K, Islam A Z M T 2023 ACS Omega 8 7017Google Scholar

    [32]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (New York: John Wliey & Sons) p264

  • 图 1  模拟器件结构

    Figure 1.  Schematic diagram of device architectures.

    图 2  GeSe异质结太阳电池能带图

    Figure 2.  Schematic diagram of energy band of GeSe based solar cell.

    图 3  不同ETL厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 3.  Variations of output parameters depending on the thickness and carrier concentration of ETL: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 4  不同HTL厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 4.  Variations of output parameters depending on the thickness and carrier concentration of HTL: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 5  不同HTL载流子浓度时太阳电池的(a) 能带结构和(b) 载流子复合率

    Figure 5.  GeSe based solar cell with different acceptor concentration of the HTL: (a) Energy band structure; (b) carrier recombination rate.

    图 6  不同吸收层厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 6.  Influences of thickness and carrier concentration variations of the GeSe absorber layer on the photovoltaic performance parameters for the proposed solar cell: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 7  不同吸收层缺陷密度和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 7.  Photovoltaic performance parameters of the GeSe based solar cell with different Nt,GeSe and operating temperature: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 8  不同Nit1和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 8.  Photovoltaic performance parameters of the GeSe based solar cell with different Nit1 and operating temperature: (a) Voc; (b) Jsc, (c) FF; (d) η.

    图 9  不同Nit2和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Figure 9.  Photovoltaic performance parameters of the GeSe based solar cell with different Nit2 and operating temperature: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 10  不同背接触功函数时太阳电池的(a)J-V曲线和(b) 能带图

    Figure 10.  The GeSe based solar cell with different back contact work function: (a) J-V curves; (b) energy band diagram.

    表 1  模拟使用的主要材料参数

    Table 1.  Simulation parameters for GeSe based solar cell in this study.

    参数 FTO TiO2 GeSe Cu2O
    厚度/µm 0.5[22] Variable Variable Variable
    相对介电常数 εr 9[22,23] 10[24] 15.3[8,25] 7.11[27]
    禁带宽度 Eg/eV 3.5[22,23] 3.2[23,24] 1.14[8,12,25] 2.17[27,28]
    电子亲和能 χ/eV 4[22,23] 3.9[23,24] 4.07[13] 3.2[27,28]
    导带有效态密度 Nc/(1017 cm–3) 22.0[22] 220.0[24] 40.0[26] 2.0[27]
    价带有效态密度 Nv/(1019 cm–3) 1.8[22] 1.8[24] 1.75[26] 1.1[27]
    施主载流子浓度 ND/(1019 cm–3) 2[22] Variable 0 0
    受主载流子浓度 NA/cm–3 0 0 Variable Variable
    电子迁移率 µn/(cm2·V–1·s–1) 20[22,23] 20[23] 11.2[8,25] 200[27]
    空穴迁移率 µp/(cm2·V–1·s–1) 10[22,23] 10[23] 12.7[8,25] 80[27]
    缺陷密度 Nt/(1015 cm–3) 1[22,23] 1[23,24] Variable 1[27]
    DownLoad: CSV

    表 2  不同背接触功函数GeSe基太阳电池的性能参数

    Table 2.  Photovoltaic performance parameters of the GeSe based solar cell with different back contact work function.

    Voc/V Jsc (mA·cm–2) FF/% η/%
    4.5 eV 0.599 40.63 47.96 11.67
    4.6 eV 0.697 40.66 55.45 15.70
    4.7 eV 0.751 40.68 63.52 19.42
    4.8 eV 0.755 40.70 74.73 22.96
    4.9 eV 0.753 40.70 82.11 25.16
    5.0 eV 0.752 40.71 82.88 25.38
    5.1 eV 0.752 40.71 82.89 25.39
    5.2 eV 0.752 40.71 82.89 25.39
    DownLoad: CSV

    表 3  模拟所得优化材料和异质结界面参数

    Table 3.  Optimized values of the different material parameters and heterointerface properties.

    参数 TiO2 GeSe Cu2O Nit1 Nit2 Au
    厚度/μm 0.05 0.4 0.05
    载流子浓度/cm–3 1018 1017 1018
    体缺陷密度/cm–3 1015 1015 1015
    界面态密度/cm–2 109 109
    背接触功函数/eV 5.1
    DownLoad: CSV
  • [1]

    Lee T D, Ebong A U 2017 Renewable Sustainable Energy Rev. 70 1286Google Scholar

    [2]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Ho-Baillie A W Y 2018 Prog. Photovoltaics Res. Appl. 26 427Google Scholar

    [3]

    刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801Google Scholar

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801Google Scholar

    [4]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [5]

    Yang W, Zhang X, Tilley S D 2021 Chem. Mater. 33 3467Google Scholar

    [6]

    Liu S C, Yang Y, Li Z B, Xue D J, Hu J S 2020 Mater. Chem. Front. 4 775Google Scholar

    [7]

    Li K, Tang J 2021 Sci. China, Ser. B Chem. 64 1605Google Scholar

    [8]

    闫彬, 薛丁江, 胡劲松 2022 化学学报 80 797Google Scholar

    Yan B, Xue D J, Hu J S 2022 Acta Chim. Sin. 80 797Google Scholar

    [9]

    Zi W, Mu F, Lu X M, Cao Y, Xie Y P, Fang L, Cheng N, Zhao Z Q, Xiao Z Y 2020 Sol. Energy 199 837Google Scholar

    [10]

    Xu D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [11]

    Chen B W, Chen G L, Wang W H, Cai H L, Yao L Q, Chen S Y, Huang Z G 2018 Sol. Energy 176 98Google Scholar

    [12]

    Chen B W, Ruan Y R, Li J M, Wang W H, Liu X L, Cai H L, Yao L Q, Zhang J M, Chen S Y, Chen G Y, Chen G L 2019 Nanoscale 11 3968Google Scholar

    [13]

    Wu J M, Lü Y P, Wu H, Zhang H S, Wang F, Zhang J, Wang J Z, Xu X H 2022 Rare Met. 41 2992Google Scholar

    [14]

    Liu S C, Li Z B, Wu J P, Zhang X, Feng M J, Xue D J, Hu J S 2021 Sci. China Mater. 64 2118Google Scholar

    [15]

    Liu S C, Dai C M, Min Y M, Hou Y, Proppe A H, Zhou Y, Chen C, Chen S Y, Tang J, Xue D J, Sargent E H, Hu J S 2021 Nat. Commun. 12 670Google Scholar

    [16]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [17]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [18]

    肖友鹏, 王怀平, 李刚龙 2021 物理学报 70 018801Google Scholar

    Xiao Y P, Wang H P, Li G L 2021 Acta Phys. Sin. 70 018801Google Scholar

    [19]

    肖友鹏, 王怀平 2022 光学学报 42 2331002Google Scholar

    Xiao Y P, Wang H P 2022 Acta Opt. Sin. 42 2331002Google Scholar

    [20]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [21]

    Ahmed S R A, Sunny A, Rahman S 2021 Sol. Energy Mater. Sol. Cells 221 110919Google Scholar

    [22]

    Huang L K, Sun X X, Li C, Xu R, Xu J, Du Y Y, Wu Y X, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 157 1038Google Scholar

    [23]

    Rai S, Pandey B K, Dwivedi D K 2020 Opt. Mater. 100 109631

    [24]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [25]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [26]

    Mohammadi M H, Fathi D, Eskandari M 2020 Sol. Energy 204 200Google Scholar

    [27]

    Lin L, Jiang L, Li P, Fan B, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [28]

    Raoui Y, Ez-Zahraouy H, Tahiri N, Bounagui O E, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [29]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [30]

    Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [31]

    Ali M H, Mamun M A A, Haque M D, Rahman M F, Hossain M K, Islam A Z M T 2023 ACS Omega 8 7017Google Scholar

    [32]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (New York: John Wliey & Sons) p264

  • [1] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [4] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [5] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [6] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [7] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [9] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [11] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [12] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [13] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] Li Tian-Jing, Li Gong-Ping, Ma Jun-Ping, Gao Xing-Xin. Effect of Co+ implantation on structural and optical properties in single-crystal TiO2. Acta Physica Sinica, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [15] Kou Dong-Xing, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan, Jiang Nian-Quan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [16] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [17] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [18] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
Metrics
  • Abstract views:  2507
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2023
  • Accepted Date:  22 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回