-
With the rapid development of emerging technologies such as multimedia services, live broadcasting, video conferencing, and high-definition television, traditional radio frequency communication is unable to meet people 's growing demand for communication capacity and transmission rate. In recent years, optical communication has received extensive attention from the industrial and scientific communities due to its advantages of large bandwidth, high speed, low power consumption, light weight, and strong anti-interference ability. As an emerging light source, the optical frequency comb (OFC) has a wide spectral range, multi-wavelength, high stability, and good phase coherence, providing a new idea for studying microwave signals with simple system structure, strong tunability and high frequency stability. At the same time, the multi-optical mode characteristics of OFC are compatible with the current communication system based on wavelength division multiplexing technology. Hundreds of laser arrays in a traditional communication system can be replaced by only one laser, which greatly reduces the power consumption of the system. Combining the above advantages, in this paper, a large-scale parallel high-speed optical communication system based on mode-locked OFC is proposed. The linewidth of the OFC locked to the rubidium atomic clock can reach 1 Hz, which is sufficient to support the transmission of high-order modulation signals. The electro-optic modulators are used to adjust the amplitude and phase of each optical mode of the mode-locked OFC and self-coherently map to the RF domain. The high-speed high-order modulation signal with coded information is obtained by frequency screening through a narrow-band filter. The communication capability of the microwave photonic modulation signal in the 16 quadrature amplitude modulation (QAM) format is verified by simulation. The 16QAM communication with the rate of 2, 6, and 14 Gbit/s is realized by using the photonic microwave signal on the 100 m space optical link, and the bit error rate (BER) is less than 10–6. The proposed large-scale parallel optical communication system based on mode-locked OFC can achieve high-speed information transmission with a compact system structure, which is suitable for inter-satellite communication, emergency communication, military communication and other fields. -
Keywords:
- mode-locked optical frequency comb /
- microwave photonics /
- spatial optical communication /
- quadrature amplitude modulation
[1] Toyoshima M 2005 J. Opt. Netw 4 300Google Scholar
[2] Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tutorials 19 57Google Scholar
[3] Yin F F, Yin Z K, Xie X Z, Dai Y T, Xu K 2021 Opt. Express 29 17839Google Scholar
[4] Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar
[5] Ataie V, Esman D, Kuo B P P, Alic N, Radic S 2015 Science 350 1343Google Scholar
[6] Li W Z, Yao J P 2010 IEEE Photonics Technol. Lett. 22 24Google Scholar
[7] Chen Y 2018 IEEE Photonics J. 10 1Google Scholar
[8] Kittlaus E A, Eliyahu D, Ganji S, Williams S, Matsko A B, Cooper K B, Forouhar S 2021 Nat. Commun. 12 4397Google Scholar
[9] Diddams S A, Vahala K, Udem T 2020 Science 369 6501Google Scholar
[10] Cundiff S T, Weiner A M 2010 Nat. Photonics 4 760Google Scholar
[11] Wang B C, Yang Z J, Sun S M, Yi X 2022 Photonics Res. 10 932Google Scholar
[12] Tan M X, Xu X Y, Boes A, Corcoran B, Wu J Y, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 J. Lightwave Technol. 38 6221Google Scholar
[13] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[14] Shao W, Wang Y, Jia S W, Xie Z, Gao D R, Wang W, Zhang D Q, Liao P X, Little B E, Chu S T, Zhao W, Zhang W F, Wang W Q, Xie X P 2022 Photonics Res. 10 2802Google Scholar
[15] Rademacher G, Puttnam B J, Luís R S, Eriksson T A, Fontaine N K, Mazur M, Chen H S, Ryf R, Neilson D T, Sillard P, Achten F, Awaji Y, Furukawa H 2021 Nat. Commun. 12 4238Google Scholar
[16] Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 Nat. Commun. 11 2568Google Scholar
[17] 陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar
Chen J W, Wang J D, Qu X H, Zhang F M 2019 Acta Phys. Sin. 68 190602Google Scholar
[18] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar
Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar
[19] Jang H, Kim B S, Chun B J, Kang H J, Jang Y S, Kim Y W, Kim Y J, Kim S W 2019 Sci. Rep. 9 7652Google Scholar
[20] Kim Y J, Jin J H, Kim Y S, Hyun S W, Kim S W 2008 Opt. Express. 16 258Google Scholar
[21] Kang H J, Yang J, Chun B J, Jang H, Kim B S, Kim Y J, Kim S W 2019 Nat. Commun. 10 4438Google Scholar
[22] Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J 2012 IEEE Photonics Technol. Lett. 24 61Google Scholar
[23] 3GPP. TS 38.141: 5G NR Base Station (BS) RF Conformance Test Methods and Requirements https://www.ccsa.org.cn/tgpp/ [2023-10-6
-
图 2 基于锁模光学频率梳的大规模并行高速光通信原理 (a)光子微波信号调制; (b)光相干接收; (c)基于光学频率梳的大规模并行数据传输; (d)载波光源提取
Figure 2. Principle of massively parallel high-speed optical communication system based on mode-locked optical frequency comb: (a) Photonic microwave signal modulation; (b) optical coherent reception; (c) massively parallel data transmission based on optical frequency comb; (d) carrier light source extraction.
图 4 16 QAM光子微波信号生成过程 (a)编码信号时域; (b)编码信号频域及带通滤波效果; (c) 2 Gbit/s的16 QAM信号时域波形; (d) 12 Gbit/s的16 QAM信号时域波形; (e) 2 Gbit/s的16 QAM星座图; (f) 12 Gbit/s的16 QAM星座图
Figure 4. Process of the generation of 16 QAM microwave photonic signal: (a) Time-domain of encoded signal; (b) frequency-domain of encoded signal and the results after band-pass filtering; (c) waveform of 2 Gbit/s 16 QAM signal; (d) waveform of 12 Gbit/s 16 QAM signal; (e) constellation diagram of 2 Gbit/s 16 QAM; (f) constellation diagram of 12 Gbit/s 16 QAM.
图 5 自由空间光通信实验 (a) 实验装置. OSA, 光谱分析仪; OSC, 示波器; BPD, 平衡探测器; OH, 光混频器; AWG, 任意波形发生器; TBPF, 可调谐带通滤波器; DC, 直流电源; IQM, 同相/正交调制器; EDFA, 掺铒光纤放大器; IM, 强度调制器; PM, 相位调制器; PD, 光探测器; Amp, 功率放大器; Tx., 发射器; Rx., 接收器. (b) 实验环境
Figure 5. Free space optical communication experiment: (a) Experimental installation. OSA, optical spectrum analyzer; OSC, oscilloscope; BPD, balance photodetector; OH, optical hybrid; AWG, arbitrary waveform generator; TBPF, tunable bandpass filter; DC, direct current; IQM, in-phase/quadrature modulator; EDFA, erbium doped fiber amplifier; IM, intensity modulator; PM, phase modulator; PD, photodetector; Amp, amplifier; Tx., transmitter; Rx., receiver. (b) experimental scenario.
图 7 100 m自由空间光通信实验结果(EVM, 误差矢量幅度) (a)—(c) 接收调制光谱; (d)—(f) 星座图. (a), (d) 2 Gbit/s; (b), (e) 6 Gbit/s; (c), (f) 14 Gbit/s
Figure 7. Experimental results of 100 m free space optical communication (EVM, error vector magnitude): (a)–(c) Received modulation spectrum; (d)–(f) constellation diagram. (a), (d) 2 Gbit/s; (b), (e) 6 Gbit/s; (c), (f) 14 Gbit/s.
-
[1] Toyoshima M 2005 J. Opt. Netw 4 300Google Scholar
[2] Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tutorials 19 57Google Scholar
[3] Yin F F, Yin Z K, Xie X Z, Dai Y T, Xu K 2021 Opt. Express 29 17839Google Scholar
[4] Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar
[5] Ataie V, Esman D, Kuo B P P, Alic N, Radic S 2015 Science 350 1343Google Scholar
[6] Li W Z, Yao J P 2010 IEEE Photonics Technol. Lett. 22 24Google Scholar
[7] Chen Y 2018 IEEE Photonics J. 10 1Google Scholar
[8] Kittlaus E A, Eliyahu D, Ganji S, Williams S, Matsko A B, Cooper K B, Forouhar S 2021 Nat. Commun. 12 4397Google Scholar
[9] Diddams S A, Vahala K, Udem T 2020 Science 369 6501Google Scholar
[10] Cundiff S T, Weiner A M 2010 Nat. Photonics 4 760Google Scholar
[11] Wang B C, Yang Z J, Sun S M, Yi X 2022 Photonics Res. 10 932Google Scholar
[12] Tan M X, Xu X Y, Boes A, Corcoran B, Wu J Y, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 J. Lightwave Technol. 38 6221Google Scholar
[13] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[14] Shao W, Wang Y, Jia S W, Xie Z, Gao D R, Wang W, Zhang D Q, Liao P X, Little B E, Chu S T, Zhao W, Zhang W F, Wang W Q, Xie X P 2022 Photonics Res. 10 2802Google Scholar
[15] Rademacher G, Puttnam B J, Luís R S, Eriksson T A, Fontaine N K, Mazur M, Chen H S, Ryf R, Neilson D T, Sillard P, Achten F, Awaji Y, Furukawa H 2021 Nat. Commun. 12 4238Google Scholar
[16] Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen T G, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J 2020 Nat. Commun. 11 2568Google Scholar
[17] 陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar
Chen J W, Wang J D, Qu X H, Zhang F M 2019 Acta Phys. Sin. 68 190602Google Scholar
[18] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar
Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar
[19] Jang H, Kim B S, Chun B J, Kang H J, Jang Y S, Kim Y W, Kim Y J, Kim S W 2019 Sci. Rep. 9 7652Google Scholar
[20] Kim Y J, Jin J H, Kim Y S, Hyun S W, Kim S W 2008 Opt. Express. 16 258Google Scholar
[21] Kang H J, Yang J, Chun B J, Jang H, Kim B S, Kim Y J, Kim S W 2019 Nat. Commun. 10 4438Google Scholar
[22] Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J 2012 IEEE Photonics Technol. Lett. 24 61Google Scholar
[23] 3GPP. TS 38.141: 5G NR Base Station (BS) RF Conformance Test Methods and Requirements https://www.ccsa.org.cn/tgpp/ [2023-10-6
Catalog
Metrics
- Abstract views: 1893
- PDF Downloads: 94
- Cited By: 0