-
The high-speed rotating superconducting rotor can be used as a high-precision inertial device to measure the angular position or angular velocity of the carrier. The mass eccentricity and spherical error of the superconducting rotor are the main error sources that affect the measurement accuracy. The more complex the structure of the superconducting rotor, the greater the mass eccentricity and spherical error caused by its production and assembly process are, and the lower the accuracy of its measurement of angular velocity. Based on this, in this work, an electromagnetic drive structure with a simple rotor structure is designed. And the torque generated by the stator on the superconducting rotor is studied through finite element method (FEM). The effects of the stator on vertical alignment and acceleration of the superconducting rotor are analyzed. Based on the research results of the superconducting rotor torque, a superconducting rotor drive method with integrated driving and vertical alignment is proposed, which achieves the driving and vertical alignment functions simultaneously through the stator coil, and corresponding stator control timing is designed. Finally, the torque distribution in the driving process of the proposed driving method is analyzed, and the driving effect is quantitatively analyzed based on the response characteristics of the stator system. The time for the superconducting rotor to be accelerated to 50 Hz under different conditions is calculated. The results show that the designed driving electromagnetic structure and the proposed integrated driving method of vertical alignment and driving can be used for vertical aligning and driving the superconducting rotor. The research results provide a reference for further optimizing the superconducting rotor structure and driving methods of superconducting rotors.
-
Keywords:
- superconducting rotor /
- Meissner effect /
- integrated driving and alignment /
- electromagnetic drive
[1] 汤继强, 赵琳, 罗俊艳 2004 弹箭与制导学报 24 136Google Scholar
Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar
[2] 胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar
Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Met. Mater. Eng. 37 436Google Scholar
[3] 胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169
Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169
[4] 江磊, 钟智勇, 仪德英, 张怀武 2014 仪器仪表学报 29 1115Google Scholar
Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2014 Chin. J. Sci. Instrum. 29 1115Google Scholar
[5] 韩玉龙, 向楠 2017 高新技术企业 05 16Google Scholar
Han Y L, Xiang N 2017 Chin. High-Tech Enterprise 05 16Google Scholar
[6] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2014 物理学报 64 018403Google Scholar
Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2014 Acta Phys. Sin. 64 018403Google Scholar
[7] Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar
[8] Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar
[9] Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, 1967 June 13–15, p657
[10] 汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)
Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University
[11] Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar
[12] Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657
[13] Hu X N, Cui C Y, Wang H, Liu J H, Wang H S, Wang H, Dai Y M, Li Y, Cheng J S, Li L K, Feng Z K, Yan L G 2015 IEEE Trans. Appl. Supercond. 25 5201705Google Scholar
[14] Cui C Y, Li L K, Hu X N, Wang H, Wang Q L 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, November 20–23, 2015 p439
[15] Shang M X, Dai Y M, Wang Q L, Yu Y J, Zhao B Z, Kim K, Oh S 2006 IEEE Trans. Appl. Supercond. 16 1481Google Scholar
[16] Hu X N, Wang Q L, Wang H S, Cui C Y, Liu J H 2012 IEEE Trans. Appl. Supercond. 22 3600904Google Scholar
[17] Buchhold T A 1961 Cryogenics 1 203Google Scholar
[18] 赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar
Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Met. Mater. Eng. 37 217Google Scholar
[19] 刘延柱 1979 静电陀螺仪动力学(北京: 清华大学出版社)第21—23页)
Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23
[20] Cui C Y, Wang Q L, Zhao S W, Hu X N 2010 IEEE Trans. Appl. Supercond. 20 1763Google Scholar
[21] 王生春, 张兢 2001 电路原理 (重庆: 重庆大学出版社) 第109—124页
Wang S C, Zhang J 2001 Circuit Principle (Chongqing: Chongqing University Press) pp109–124
-
-
[1] 汤继强, 赵琳, 罗俊艳 2004 弹箭与制导学报 24 136Google Scholar
Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar
[2] 胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar
Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Met. Mater. Eng. 37 436Google Scholar
[3] 胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169
Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169
[4] 江磊, 钟智勇, 仪德英, 张怀武 2014 仪器仪表学报 29 1115Google Scholar
Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2014 Chin. J. Sci. Instrum. 29 1115Google Scholar
[5] 韩玉龙, 向楠 2017 高新技术企业 05 16Google Scholar
Han Y L, Xiang N 2017 Chin. High-Tech Enterprise 05 16Google Scholar
[6] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2014 物理学报 64 018403Google Scholar
Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2014 Acta Phys. Sin. 64 018403Google Scholar
[7] Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar
[8] Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar
[9] Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, 1967 June 13–15, p657
[10] 汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)
Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University
[11] Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar
[12] Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657
[13] Hu X N, Cui C Y, Wang H, Liu J H, Wang H S, Wang H, Dai Y M, Li Y, Cheng J S, Li L K, Feng Z K, Yan L G 2015 IEEE Trans. Appl. Supercond. 25 5201705Google Scholar
[14] Cui C Y, Li L K, Hu X N, Wang H, Wang Q L 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, November 20–23, 2015 p439
[15] Shang M X, Dai Y M, Wang Q L, Yu Y J, Zhao B Z, Kim K, Oh S 2006 IEEE Trans. Appl. Supercond. 16 1481Google Scholar
[16] Hu X N, Wang Q L, Wang H S, Cui C Y, Liu J H 2012 IEEE Trans. Appl. Supercond. 22 3600904Google Scholar
[17] Buchhold T A 1961 Cryogenics 1 203Google Scholar
[18] 赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar
Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Met. Mater. Eng. 37 217Google Scholar
[19] 刘延柱 1979 静电陀螺仪动力学(北京: 清华大学出版社)第21—23页)
Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23
[20] Cui C Y, Wang Q L, Zhao S W, Hu X N 2010 IEEE Trans. Appl. Supercond. 20 1763Google Scholar
[21] 王生春, 张兢 2001 电路原理 (重庆: 重庆大学出版社) 第109—124页
Wang S C, Zhang J 2001 Circuit Principle (Chongqing: Chongqing University Press) pp109–124
Catalog
Metrics
- Abstract views: 2370
- PDF Downloads: 53
- Cited By: 0