Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method

Niu Jia-Lin Dong Si-Yuan Wei Yong-Xing Jin Chang-Qing Nan Rui-Hua Yang Bin

Citation:

Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method

Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin
PDF
HTML
Get Citation
  • AgNbO3, with the antiferroelectric ordering and huge polarization (>50 μC/cm2), has potential applications in smart electronic devices, such as energy storage dielectrics, large displacement actuators, and electrocaloric cooling device. Large electro-strain and excellent energy storage properties have been reported in AgNbO3-based ceramics. Nevertheless, the lack of systematic research on the AbNbO3 single crystals increases the difficulty in further understanding their structure-property relationship.In this work, ${\left\langle {001} \right\rangle _c}$ oriented AgNbO3 single crystals with a large size (maximum size 5 mm×4 mm×4 mm) and high quality are successfully grown by the flux method. The phase transition characteristics are studied by the X-ray diffraction, temperature dependence of dielectric data and AC impedance, polarized light microscope photos, and differential scanning calorimetry curves. The electrical and optical properties are studied by the ferroelectric response and electro-strain response, optical absorbance spectrum and photo-dielectric effect.The AgNbO3 single crystals with the M phase exhibit the same domain structure. When the structure changes from M2 to M3, the contrast of the PLM image is darkened. Correspondingly, the conductivity and dielectric loss significantly increase, which relates to the dynamic behaviors of the carriers. Interestingly, neither exothermic peak nor endothermic peak relating to the M2-M3 transition is observed. The active energy for the M3 phase AgNbO3 single crystal is ~1.24 eV. When the structure changes from orthogonal M3 to paraelectric orthogonal O, the domain structure disappears and the contrast becomes darker. The finding indicates that the anisotropy of the crystals disappears. At the same time, an obvious thermal hysteresis observed in the DSC curve reveals that the M3-O transition is first-order. At room temperature, the direct band gap of AgNbO3 single crystal is ~2.73 eV, which is slightly narrower than that of AgNbO3 ceramic. Below the critical electric field, AgNbO3 single crystal shows an electro-strain of 0.076% under Em = 130 kV/cm. The obtained electro-strain value is much higher than that of AgNbO3 ceramic under the same electric field. The relative permittivity increases from 70 to 73 under the green laser irradiation, showing an apparent photo-dielectric effect. We believe that our study can assist in the further understanding of the phase transition characteristics and physical properties in AgNbO3 single crystals.
      Corresponding author: Wei Yong-Xing, weiyx1985@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11704301) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JM212).
    [1]

    Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar

    [2]

    Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar

    [3]

    Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar

    [4]

    Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar

    [5]

    Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar

    [6]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar

    [7]

    Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar

    [8]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar

    [9]

    Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar

    [10]

    Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar

    [11]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [12]

    Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar

    [13]

    Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar

    [14]

    Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar

    [15]

    Pawełczyk M 1987 Phase Transitions 8 273Google Scholar

    [16]

    Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar

    [17]

    Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar

    [18]

    Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar

    [19]

    Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar

    [20]

    Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar

    [21]

    Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar

    [22]

    Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar

    [23]

    Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar

    [24]

    Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar

    [25]

    Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar

    [26]

    Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar

    [27]

    Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar

  • 图 1  利用助溶剂法生长出的AgNbO3单晶块体, 插图为切割抛光后的试样

    Figure 1.  AgNbO3 single crystals grown by flux method. The inset shows the cut specimen.

    图 2  AgNbO3晶体及其粉末XRD图 (a)单晶XRD; (b)粉末XRD(Pbcm)精修; (c)粉末XRD(Pmc21)精修

    Figure 2.  X-ray diffraction patterns of AgNbO3: (a) Single-crystal XRD pattern; (b) rietveld refined powder XRD data with the Pbcm space group; (c) rietveld refined powder XRD data with the Pmc21 space group.

    图 3  AgNbO3的相转变特征 (a)介电常数与温度关系; (b)介电损耗与温度关系; (c)变温XRD图谱; (d) 不同温度下的PLM照片; (e)升降温DSC图谱

    Figure 3.  Phase transition characteristics of AgNbO3: (a) Temperature dependence of relative permittivity; (b) temperature dependence of loss tangent; (c) XRD patterns at various temperatures; (d) PLM photos at various temperatures; (e) DSC curves on heating and cooling.

    图 4  AgNbO3晶体的(a)阻抗实部与虚部关系、 (b) Arrhenius拟合曲线及介电常数与温度的关系

    Figure 4.  (a) Relationship between the real part and imaginary part of the impedance, and (b) Arrhenius fitting curve, and temperature dependence of relative permittivity in AgNbO3 single crystals.

    图 5  在不同场强下AgNbO3晶体的(a)极化电流-电场曲线、(b) 极化强度-电场曲线和(c)应变响应

    Figure 5.  Loops of (a) polarization current, (b) polarization versus external electric field E and (c) strain response of AgNbO3 crystal under different ac maximum electric field

    图 6  AgNbO3晶体的光吸收谱线, 插图(a)为(αhν)2与()的关系, 插图(b)为(αhν)1/2与()的关系

    Figure 6.  Optical absorbance spectrum of AgNbO3 single crystals, inset (a) shows the relationship of (αhν)2and (), inset (b) shows the relationship of (αhν)1/2and ()

    图 7  AgNbO3晶体在暗光下和绿激光照射下的介电常数与损耗

    Figure 7.  Light-on (under green light illumination) and light-off values of relative permittivity and dielectric loss in AgNbO3 single crystals.

  • [1]

    Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar

    [2]

    Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar

    [3]

    Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar

    [4]

    Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar

    [5]

    Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar

    [6]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar

    [7]

    Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar

    [8]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar

    [9]

    Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar

    [10]

    Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar

    [11]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [12]

    Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar

    [13]

    Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar

    [14]

    Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar

    [15]

    Pawełczyk M 1987 Phase Transitions 8 273Google Scholar

    [16]

    Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar

    [17]

    Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar

    [18]

    Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar

    [19]

    Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar

    [20]

    Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar

    [21]

    Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar

    [22]

    Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar

    [23]

    Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar

    [24]

    Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar

    [25]

    Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar

    [26]

    Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar

    [27]

    Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar

  • [1] Chen Xue-Lian, Shen Yan-Bing, Yuan Zhi-Cong, Li Kai-Rui, Pan Xi-Qiang. Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 Composites Nanocrystals and in-situ study of phase transformation process. Acta Physica Sinica, 2024, 73(9): 096801. doi: 10.7498/aps.73.20240247
    [2] Nan Rui-Hua, Wu Chun-Yan, Liu Teng, Luo Jia-Xin, Wei Yong-Xing, Jian Zeng-Yun. Growth mechanism, phase transition and optical properties of large-size and high-quality perovskite CH3NH3PbCl3 single crystal. Acta Physica Sinica, 2023, 72(13): 138101. doi: 10.7498/aps.72.20230097
    [3] Wang Huan, He Chun-Juan, Xu Sheng, Wang Yi-Yan, Zeng Xiang-Yu, Lin Jun-Fa, Wang Xiao-Yan, Gong Jing, Ma Xiao-Ping, Han Kun, Wang Yi-Ting, Xia Tian-Long. Single crystal growth of topological semimetals and magnetic topological materials. Acta Physica Sinica, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [4] Hong Yuan-Ting, Ma Jiang-Ping, Wu Zheng, Ying Jing-Shi, You Hui-Lin, Jia Yan-Min. Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials. Acta Physica Sinica, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [5] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [6] Yang Yu-Juan, Wang Jin-Cheng, Zhang Yu-Xiang, Zhu Yao-Chan, Yang Gen-Cang. An investigation of the lamellar-rod transition in binary eutectic using multi-phase field model. Acta Physica Sinica, 2009, 58(1): 650-654. doi: 10.7498/aps.58.650
    [7] Bai Suo-Zhu, Yao Bin, Zheng Da-Fang, Xing Guo-Zhong, Su Wen-Hui. Structural characterization and phase transition of an unknown phase of boron carbon nitride compound. Acta Physica Sinica, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [8] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [9] ZHAO LI-ZHU, SHEN MENG-YAN, T. GOTO. GROWING N-SALICYLIDENEANILINE (SA) SINGLE CRYSTAL BY PHYSICAL VAPOUR DEPOSITATION AND ITS POLARIZATION PROPERTY. Acta Physica Sinica, 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [10] GAO XING-SEN, CHEN XIAO-YUAN, YIN JIANG, LIU JUN-MING, LIU ZHI-GUO. PHASE TRANSITION CHARACTERS OF FERROELETROMAGNET Pb(Fe1/2Nb1/2)O3. Acta Physica Sinica, 1999, 48(5): 942-947. doi: 10.7498/aps.48.942
    [11] LIU JIA-LU, ZHANG TING-QING, LUO HONG-WEI, YAN BEI-PING, LANG WEI-HE, ZHANG BAO-FENG. NUMERICAL SIMULATION OF THE GROWTH OF Hg1-xCdxTe CRYSTAL BY THE TELLURIUM SOLVENT METHOD. Acta Physica Sinica, 1998, 47(2): 275-285. doi: 10.7498/aps.47.275
    [12] HAN LI, WANG XIAO-HUI, YU WEI, DONG LI-FANG, LI XIAO-WEI, FU GUANG-SHENG. CHARACTERIZATION STUDY OF TEXTURED DIAMOND FILMS GROWN ON SILICON (100) SUBSTRATE BY HOT FILAMENT CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 1997, 46(11): 2206-2214. doi: 10.7498/aps.46.2206
    [13] Yu Chao-Wen, He Pi-Mo, Xu Ya-Bo, Qi Zhong-Fu, Li Wen-Zhu. . Acta Physica Sinica, 1995, 44(3): 488-491. doi: 10.7498/aps.44.488
    [14] Zhao Zong-yuan, Chen Li-quan. MUTUAL EFFECT ON PHASE TRANSITION TEMPERATURES OF TWO PHASES IN AgI(α-Fe2O3) COMPOSITION ELECTROLYTES. Acta Physica Sinica, 1986, 35(9): 1158-1163. doi: 10.7498/aps.35.1158
    [15] He Shou-an, Zhao You-xiang, Liu Jia-rui, Li Yin-yuan. EFFECT OF H+ ON THE β→α TRANSITION IN β-LiIO3 AFTER HIGH PRESSURE TREATMENT. Acta Physica Sinica, 1983, 32(4): 466-472. doi: 10.7498/aps.32.466
    [16] MING NAI-BEN, HONG JING-FEN, SUN ZHENG-MIN, YANG YONG-SHUN. ROTATIONAL STRIATIONS IN CZOCHRALSKI-GROWN LiNbO3 SINGLE CRYSTALS. Acta Physica Sinica, 1981, 30(12): 1672-1675. doi: 10.7498/aps.30.1672
    [17] GU YUAN-XIN, GE PEI-WEN, ZHAO YA-QIN, HU BO-QING, WU LAN-SHENG, FU QUAN-GUI. X-RAY TOPOGRAPHICAL STUDY ON DEFECTS IN α-LiIO3 DECORATED BY SPACE CHARGE DUE TO THE APPLIED DC FIELDS. Acta Physica Sinica, 1980, 29(6): 711-717. doi: 10.7498/aps.29.711
    [18] LIU JI-ZHE, JIN TONG-ZHENG, LIU GONG-QIANG. FLUX GROWTH OF GGG CRYSTALS AND DETERMINATION OF THE NUCLEATION TEMPERATURE. Acta Physica Sinica, 1980, 29(1): 117-121. doi: 10.7498/aps.29.117
    [19] DENG ZHAO-DE, SHAO SHI-PING, LIANG HONG-LIN. DIELECTRIC AND PYROELETRIC PROPERTIES OF SINGLE CRYSTAL TGS GROWN BY THE METHOD OF CHANGING SOLVENT. Acta Physica Sinica, 1980, 29(3): 389-391. doi: 10.7498/aps.29.389
    [20] HUANG BEN-LI, PEI AI-LI, WANG CHUN-DEH. EFFECTS OF ALCOHOLS ON ATOMIC-ABSORPTION AND EMISSION FLAME PHOTOMETRIC DETERMINATION OF SODIUM. Acta Physica Sinica, 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
Metrics
  • Abstract views:  921
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2023
  • Accepted Date:  07 October 2023
  • Available Online:  27 October 2023
  • Published Online:  05 February 2024

/

返回文章
返回