搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种轴径双向分离式电磁线圈驱动装置的结构响应特性

丛源涛 王秋良 程军胜 熊玲 孙建

引用本文:
Citation:

一种轴径双向分离式电磁线圈驱动装置的结构响应特性

丛源涛, 王秋良, 程军胜, 熊玲, 孙建

Analysis of structural response characteristics of a bidirectional separated electromagnetic coil drive device

Cong Yuan-Tao, Wang Qiu-Liang, Cheng Jun-Sheng, Xiong Ling, Sun Jian
PDF
HTML
导出引用
  • 为了避免传统一体化驱动结构在运行过程中容易出现骨架断裂失效等不稳定现象. 本文根据典型一体化驱动结构在运行过程中的应力应变, 结合加速实验后出现内壁裂痕的一体化驱动结构的耐压放电测试, 分析确定一体化驱动结构存在的不稳定因素, 初步设计了一种轴径双向分离式模块化的新型驱动结构, 对新结构在运行过程中的电磁及结构响应等展开有限元仿真分析. 在相同激励条件下, 新型驱动结构内壁上的应力应变远小于一体化结构, 同时一体化驱动结构的内壁上的最大形变约为10–2 m量级, 而新型驱动结构在运行过程中内壁上的最大形变降低至10–5—10–6 m量级. 结果表明新结构能够在保证推进性能的前提下, 降低内壁和相间隔板的应力应变及变形程度, 提高了结构的可靠性, 能够为电磁线圈驱动结构的设计优化提供一定参考和借鉴.
    In order to alleviate the common problems of skeleton fracture and failure in traditional propulsion systems, the insulation degradation and structural instability existing in integrated drive structures during operation are investigated in this work. By using stress-strain calculations of a typical integrated drive structure and voltage-withstanding discharge tests after acceleration experiments, key factors are identified, and it is believed that the tensile stress inside the driving structure is one of the reasons for structural instability. Owing to the electromagnetic force acting on the coil, the integrated driving structure exhibits high tensile stress and strain on the inner wall and interphase partition, accompanied by significant deformation, which is not conducive to the overall structural stability. Based on the above calculation results, a novel modular drive structure with bidirectional separation is proposed, which can realize the radial separation between the phase partition and the skeleton inner cylinder, as well as axial separation between different driving coils. Finite element simulation analysis is conducted to evaluate its acceleration performance and structural response during operation. The results indicate that under the same excitation conditions, the new driving structure greatly reduces the interaction between the coil and the inner wall during operation, so the stress-strain on the inner wall of the new driving structure is much smaller than that of the integrated structure. The maximum deformation decreases from approximately 10–2 m in the integrated structure to about 10–5 m to 10–6 m in the new design. These findings emphasize the potential of new structure to improve reliability while ensuring propulsion performance, providing valuable insights for optimizing electromagnetic coil drive structures. For this new structure, there will be plans to conduct high-pressure propulsion experiments in the future to verify its reliability.
      通信作者: 王秋良, qiuliang@mail.iee.ac.cn ; 程军胜, jscheng@mail.iee.ac.cn
    • 基金项目: 中国科学院科研仪器设备研制项目(批准号: YJKYYQ20200011)、中国科学院“西部之光”项目(批准号: bzg-zdsys-202317)和中国科学院联合基金项目(批准号: 8091A02)资助的课题.
      Corresponding author: Wang Qiu-Liang, qiuliang@mail.iee.ac.cn ; Cheng Jun-Sheng, jscheng@mail.iee.ac.cn
    • Funds: Project supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20200011), the “Light of West China” Program of Chinese Academy of Sciences, China (Grant No. bzg-zdsys-202317), and the Joint Fund of Chinese Academy of Sciences, China (Grant No. 8091A02).
    [1]

    Song M G, Park S W, Le D V, Go B S, Park M 2023 IEEE Trans. Plasma Sci. 51 3611Google Scholar

    [2]

    Tosun N, Polat H, Ceylan D, Karagoz M, Yıldırım B, Güngen İbrahim, Keysan O 2020 IEEE Trans. Plasma Sci. 48 3220Google Scholar

    [3]

    马伟明, 鲁军勇 2023 电工技术学报 38 3943Google Scholar

    Ma W M, Lu J Y 2023 Trans. China Electrotech. So. 38 3943Google Scholar

    [4]

    王秋良, 王厚生, 李献, 陈顺中 2015 高电压技术 41 2489Google Scholar

    Wang Q L, Wang H S, Li X, Chen S Z 2015 High Volt. Eng. 41 2489Google Scholar

    [5]

    Lu J Y, Ma W M 2011 IEEE Trans. Plasma Sci. 39 116Google Scholar

    [6]

    王湘 2020 硕士学位论文 (湖南: 国防科技大学)

    Wang X 2020 M. S. Thesis (Hunan: National Unversity of Defense Technology

    [7]

    苏子舟, 张博, 国伟, 刘学超, 屈武斌 2011 火炮发射与控制学报 121 93Google Scholar

    Su Z Z, Zhang B, Guo W, Liu X C, Qu W B 2011 J. Gun Launch Contr. 121 93Google Scholar

    [8]

    王禹晨, 刘晓艳, 黄懿赟, 管锐, 江加福 2022 强激光与粒子束 34 81Google Scholar

    Wang Y C, Liu X Y, Huang Y Y, Guan R, Jiang J F 2022 High Power Laser Partic. Beams 34 81Google Scholar

    [9]

    Cong Y T, Cheng J S, Xiong L, Wang Y C, Sun J 2021 IEEE Trans. Plasma Sci. 49 914Google Scholar

    [10]

    Cong Y T, Cheng J S, Wang Q L, Xiong L, Sun J, Wang Y C 2021 IEEE Trans. Plasma Sci. 49 4002Google Scholar

    [11]

    Kaye R J, Shokair I R, Wavrik R W, Dempsey J F, Honey W E, Shimp K J, Douglas G M 1995 IEEE Trans. Magn. 31 478Google Scholar

    [12]

    Kaye R J, Mann G A 2003 Sandia National Laboratories

    [13]

    Lockner T, Kaye R, Turman B 2004 Conference Record of the Twenty-Sixth International Power Modulator Symposium San Francisco, California, USA, May 23–26, 2004 p119

    [14]

    关晓存, 雷彬, 李治源 2012 固体力学学报 33 209Google Scholar

    Guan X C, Lei B, Li Z Y 2012 Acta Mech. Solida Sin. 33 209Google Scholar

    [15]

    Zhang Y J, Qin W N, Zhang Y D 2016 Electrical Mach. Contr. 20 77 [张宇娇, 秦威南, 张亚东 2016 电机与控制学报 20 77]Google Scholar

    Zhang Y J, Qin W N, Zhang Y D 2016 Electrical Mach. Contr. 20 77Google Scholar

    [16]

    Zhang Y J, Qin W N, Ruan J J 2015 IEEE Trans. Plasma Sci. 43 1288Google Scholar

    [17]

    秦威南 2015 硕士学位论文(宜昌: 三峡大学)

    Qin W N 2015 M. S. Thesis (Yichang: China Three Gorges University

    [18]

    贺亚男, 关晓存, 孟庆云, 管少华, 郭灯华 2021 火炮发射与控制学报 42 1Google Scholar

    He Y N, Guan X C, Meng Q Y, Guan S H, Guo D H 2021 J. Gun Launch Contr. 42 1Google Scholar

    [19]

    李睿杰, 程军胜, 熊玲, 陈功轩, 邓兆哲, 何湘宁 2023 兵器装备工程学报 44 103Google Scholar

    Li R J, Cheng J S, Xiong L, Chen G X, Deng Z Z, He X N 2023 J. Ordn. Equip. Eng. 44 103Google Scholar

    [20]

    李伟, 李首德, 刘世亮, 熊玲, 程军胜 2023 兵器装备工程学报 44 157Google Scholar

    Li W, Li S D, Liu S L, Xiong L, Cheng J S 2023 J. Ordn. Equip. Eng. 44 157Google Scholar

  • 图 1  三相异步电磁线圈推进装置剖面结构示意图

    Fig. 1.  Schematic diagram of sectional structure of three-phase asynchronous electromagnetic coil launcher.

    图 2  一体化驱动结构响应特征与失效实物照片

    Fig. 2.  Structural response characteristics and physical photos of integrated drive structures.

    图 3  一体化驱动结构的推进性能

    Fig. 3.  Propulsion performance of integrated drive structure.

    图 4  一体化驱动结构应力应变仿真结果 (a)等效应力; (b)等效应变

    Fig. 4.  Simulation results of stress and strain of integrated drive structure: (a) Equivalent (Von-mises) stress; (b) equivalent elastic strain.

    图 5  一体化驱动结构形变程度 (a)径向变形; (b)轴向变形; (c)总变形

    Fig. 5.  Deformation of integrated drive structure: (a) Radial deformation; (b) axial deformation; (c) total deformation.

    图 6  耐压放电测试系统示意图

    Fig. 6.  Schematic diagram of withstand voltage discharge testing system.

    图 7  耐压放电测试系统实物图

    Fig. 7.  Physical diagram of withstand voltage discharge testing system.

    图 8  不规则放电电流波形

    Fig. 8.  Irregular discharge current waveform.

    图 9  新型驱动结构示意图

    Fig. 9.  Schematic diagram of the new drive structure.

    图 10  新型驱动结构的推进性能

    Fig. 10.  Propulsion performance of the new drive structure.

    图 11  新型驱动结构应力应变仿真结果 (a)相间隔板等效应变; (b) 相间隔板等效应力; (c) 内壁等效应变; (d) 内壁等效应力

    Fig. 11.  Stress and strain results of the new drive structure: (a) Equivalent strain of partition ; (b) equivalent stress of partition; (c) equivalent strain of inner wall; (d) equivalent stress of inner wall.

    图 12  新型驱动结构形变程度 (a)相间隔板径向形变; (b) 相间隔板轴向形变; (c) 内壁管道径向形变; (d) 内壁管道轴向形变

    Fig. 12.  Deformation of the new drive structure: (a) Radial deformation of partition; (b) axial deformation of partition; (c) radial deformation of innerwall; (d) axial deformation of innerwall.

    表 1  驱动结构尺寸和材料性能参数

    Table 1.  Drive structure dimensions and material performance parameters.

    参数
    电枢质量/kg 2
    骨架内半径/mm 60
    导线径向厚度/mm 2.5
    线圈轴向宽度/mm 40
    匝间绝缘厚度/mm 0.5
    相间隔板轴向宽度/mm 5
    绕组径向匝数 8
    骨架内壁厚度/mm 2.5
    绝缘材料杨氏模量 Ej/GPa 100
    绝缘材料泊松比 vj 0.22
    铜导体杨氏模量 Ec/GPa 110
    铜导体泊松比 vc 0.34
    下载: 导出CSV
  • [1]

    Song M G, Park S W, Le D V, Go B S, Park M 2023 IEEE Trans. Plasma Sci. 51 3611Google Scholar

    [2]

    Tosun N, Polat H, Ceylan D, Karagoz M, Yıldırım B, Güngen İbrahim, Keysan O 2020 IEEE Trans. Plasma Sci. 48 3220Google Scholar

    [3]

    马伟明, 鲁军勇 2023 电工技术学报 38 3943Google Scholar

    Ma W M, Lu J Y 2023 Trans. China Electrotech. So. 38 3943Google Scholar

    [4]

    王秋良, 王厚生, 李献, 陈顺中 2015 高电压技术 41 2489Google Scholar

    Wang Q L, Wang H S, Li X, Chen S Z 2015 High Volt. Eng. 41 2489Google Scholar

    [5]

    Lu J Y, Ma W M 2011 IEEE Trans. Plasma Sci. 39 116Google Scholar

    [6]

    王湘 2020 硕士学位论文 (湖南: 国防科技大学)

    Wang X 2020 M. S. Thesis (Hunan: National Unversity of Defense Technology

    [7]

    苏子舟, 张博, 国伟, 刘学超, 屈武斌 2011 火炮发射与控制学报 121 93Google Scholar

    Su Z Z, Zhang B, Guo W, Liu X C, Qu W B 2011 J. Gun Launch Contr. 121 93Google Scholar

    [8]

    王禹晨, 刘晓艳, 黄懿赟, 管锐, 江加福 2022 强激光与粒子束 34 81Google Scholar

    Wang Y C, Liu X Y, Huang Y Y, Guan R, Jiang J F 2022 High Power Laser Partic. Beams 34 81Google Scholar

    [9]

    Cong Y T, Cheng J S, Xiong L, Wang Y C, Sun J 2021 IEEE Trans. Plasma Sci. 49 914Google Scholar

    [10]

    Cong Y T, Cheng J S, Wang Q L, Xiong L, Sun J, Wang Y C 2021 IEEE Trans. Plasma Sci. 49 4002Google Scholar

    [11]

    Kaye R J, Shokair I R, Wavrik R W, Dempsey J F, Honey W E, Shimp K J, Douglas G M 1995 IEEE Trans. Magn. 31 478Google Scholar

    [12]

    Kaye R J, Mann G A 2003 Sandia National Laboratories

    [13]

    Lockner T, Kaye R, Turman B 2004 Conference Record of the Twenty-Sixth International Power Modulator Symposium San Francisco, California, USA, May 23–26, 2004 p119

    [14]

    关晓存, 雷彬, 李治源 2012 固体力学学报 33 209Google Scholar

    Guan X C, Lei B, Li Z Y 2012 Acta Mech. Solida Sin. 33 209Google Scholar

    [15]

    Zhang Y J, Qin W N, Zhang Y D 2016 Electrical Mach. Contr. 20 77 [张宇娇, 秦威南, 张亚东 2016 电机与控制学报 20 77]Google Scholar

    Zhang Y J, Qin W N, Zhang Y D 2016 Electrical Mach. Contr. 20 77Google Scholar

    [16]

    Zhang Y J, Qin W N, Ruan J J 2015 IEEE Trans. Plasma Sci. 43 1288Google Scholar

    [17]

    秦威南 2015 硕士学位论文(宜昌: 三峡大学)

    Qin W N 2015 M. S. Thesis (Yichang: China Three Gorges University

    [18]

    贺亚男, 关晓存, 孟庆云, 管少华, 郭灯华 2021 火炮发射与控制学报 42 1Google Scholar

    He Y N, Guan X C, Meng Q Y, Guan S H, Guo D H 2021 J. Gun Launch Contr. 42 1Google Scholar

    [19]

    李睿杰, 程军胜, 熊玲, 陈功轩, 邓兆哲, 何湘宁 2023 兵器装备工程学报 44 103Google Scholar

    Li R J, Cheng J S, Xiong L, Chen G X, Deng Z Z, He X N 2023 J. Ordn. Equip. Eng. 44 103Google Scholar

    [20]

    李伟, 李首德, 刘世亮, 熊玲, 程军胜 2023 兵器装备工程学报 44 157Google Scholar

    Li W, Li S D, Liu S L, Xiong L, Cheng J S 2023 J. Ordn. Equip. Eng. 44 157Google Scholar

  • [1] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [3] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [4] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [5] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [6] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [7] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [8] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [9] 刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰. 基于回转体型艇身的电磁流体表面推进与矢量控制特性研究. 物理学报, 2014, 63(7): 074704. doi: 10.7498/aps.63.074704
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [12] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [13] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响. 物理学报, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [14] 钟广明, 杜晓晴, 唐杰灵, 董向坤, 雷小华, 陈伟民. 影响倒装焊LED芯片电流分布均匀性的因素分析. 物理学报, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [15] 刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞. 电磁流体表面推进机理与效果分析. 物理学报, 2011, 60(8): 084701. doi: 10.7498/aps.60.084701
    [16] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [17] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [19] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [20] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
计量
  • 文章访问数:  1718
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-03
  • 修回日期:  2024-04-16
  • 上网日期:  2024-05-25
  • 刊出日期:  2024-07-05

/

返回文章
返回