Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fundamental statistics of higher-order networks: a survey

Liu Bo Zeng Yu-Jie Yang Rong-Mei Lü Lin-Yuan

Citation:

Fundamental statistics of higher-order networks: a survey

Liu Bo, Zeng Yu-Jie, Yang Rong-Mei, Lü Lin-Yuan
PDF
HTML
Get Citation
  • Complex networks serve as indispensable instruments for characterizing and understanding intricate real-world systems. Recently, researchers have delved into the realm of higher-order networks, seeking to delineate interactions within these networks with greater precision or analyze traditional pairwise networks from a higher-dimensional perspective. This effort has unearthed some new phenomena different from those observed in the traditional pairwise networks. However, despite the importance of higher-order networks, research in this area is still in its infancy. In addition, the complexity of higher-order interactions and the lack of standardized definitions for structure-based statistical indicators, also pose challenges to the investigation of higher-order networks. In recognition of these challenges, this paper presents a comprehensive survey of commonly employed statistics and their underlying physical significance in two prevalent types of higher-order networks: hypergraphs and simplicial complex networks. This paper not only outlines the specific calculation methods and application scenarios of these statistical indicators, but also provides a glimpse into future research trends. This comprehensive overview serves as a valuable resource for beginners or cross-disciplinary researchers interested in higher-order networks, enabling them to swiftly grasp the fundamental statistics pertaining to these advanced structures. By promoting a deeper understanding of higher-order networks, this paper facilitates quantitative analysis of their structural characteristics and provides guidance for researchers who aim to develop new statistical methods for higher-order networks.
      Corresponding author: Lü Lin-Yuan, linyuan.lv@ustc.edu.cn
    • Funds: Project supported by the STI 2030-Major Projects (Grant No. 2022ZD0211400), the Major Program of the National Natural Science Foundation of China (Grant No. T2293771), and the Science Fund for Distinguished Young Scholars of Sichuan Provincek, China (Grant No. 2023NSFSC1919).
    [1]

    Marin A, Wellman B 2011 Social network analysis: An introduction (London: SAGE publications) pp11−25

    [2]

    Kossinets G, Watts D J 2006 Science 311 88Google Scholar

    [3]

    Alon U 2003 Science 301 1866Google Scholar

    [4]

    Alm E, Arkin A P 2003 Curr. Opin. Struct. Biol. 13 193Google Scholar

    [5]

    Bose A, Clements K A 1987 Proc. IEEE 75 1607Google Scholar

    [6]

    Wu F F, Varaiya P 1999 Int. J. Electr. Power Energy Syst. 21 75Google Scholar

    [7]

    Williams J C, Mahmassani H S, Herman R 1987 Transp. Res. Rec. 1112 78

    [8]

    Verma T, Araújo N A, Herrmann H J 2014 Sci. Rep. 4 5638Google Scholar

    [9]

    Strogatz S H 2001 Nature 410 268Google Scholar

    [10]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [11]

    Costa L D F, Rodrigues F A, Travieso G, Villas Boas P R 2007 Adv. Phys. 56 167Google Scholar

    [12]

    Barabási A L 2013 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 20120375Google Scholar

    [13]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (高等教育出版社) 第82页

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Higher Education Press) p82

    [14]

    周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar

    [15]

    Courtney O T, Bianconi G 2017 Phys. Rev. E 95 062301Google Scholar

    [16]

    Lung R I, Gaskó N, Suciu M A 2018 Scientometrics 117 1361Google Scholar

    [17]

    Pearcy N, Crofts J J, Chuzhanova N 2014 Int. J. Biol. Vet. Agric. Food Eng. 8 752

    [18]

    Mastrandrea R, Fournet J, Barrat A 2015 PloS One 10 e0136497Google Scholar

    [19]

    Stehlé J, Voirin N, Barrat A, et al. 2011 PloS One 6 e23176Google Scholar

    [20]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar

    [21]

    Battiston F, Amico E, Barrat A, et al. 2021 Nat. Phys. 17 1093Google Scholar

    [22]

    Bianconi G 2021 Higher-order Networks (Cambridge: Cambridge University Press) pp7–45

    [23]

    Shi D, Chen G 2022 Natl. Sci. Rev. 9 nwac038Google Scholar

    [24]

    Zhao D, Li R, Peng H, Zhong M, Wang W 2022 Chaos Solit. Fractals 155 111701Google Scholar

    [25]

    Wang W, Li W, Lin T, Wu T, Pan L, Liu Y 2022 Appl. Math. Comput. 420 126793Google Scholar

    [26]

    Millán A P, Torres J J, Bianconi G 2020 Phys. Rev. Lett. 124 218301Google Scholar

    [27]

    Lucas M, Cencetti G, Battiston F 2020 Phys. Rev. Res. 2 033410Google Scholar

    [28]

    Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 1Google Scholar

    [29]

    Chowdhary S, Kumar A, Cencetti G, Iacopini I, Battiston F 2021 J. Phys.: Complex. 2 035019Google Scholar

    [30]

    陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀 2024 物理学报 73 038901Google Scholar

    Chen H Y, Xu T, Liu C, Zhang Z K, Zhan X X 2024 Acta Phys. Sin. 73 038901Google Scholar

    [31]

    Gómez-Gardenes J, Gómez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701Google Scholar

    [32]

    Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A, Perc M, Boccaletti S 2021 Phys. Rev. Lett. 127 258301Google Scholar

    [33]

    Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar

    [34]

    Zhang Y, Latora V, Motter A E 2021 Commun. Phys. 4 195Google Scholar

    [35]

    Kundu S, Ghosh D 2022 Phys. Rev. E 105 L042202Google Scholar

    [36]

    Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar

    [37]

    Wang W, Wang Z X, Cai S M 2018 Phys. Rev. E 98 052312Google Scholar

    [38]

    Guilbeault D, Becker J, Centola D 2018 Complex Spreading Phenomena in Social Systems (Cham: Springer) pp3−25

    [39]

    Wang W, Liu Q H, Liang J, Hu Y, Zhou T 2019 Phys. Rep. 820 1Google Scholar

    [40]

    Wang D, Zhao Y, Luo J, Leng H 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 053112Google Scholar

    [41]

    王兆慧, 沈华伟, 曹婍, 程学旗 2011 软件学报 33 171Google Scholar

    Wang Z H, Shen H W, Cao Q, Cheng X Q 2011 J. Softw. 33 171Google Scholar

    [42]

    Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [43]

    任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar

    [44]

    李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar

    Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar

    [45]

    Lü L, Zhou T 2011 Phys. A: Stat. Mech. Appl. 390 1150Google Scholar

    [46]

    Liu B, Yang R, Lü L 2023 Chaos: Interdiscip. J. Nonlinear Sci. 33 083108Google Scholar

    [47]

    吕琳媛 2010 电子科技大学学报 39 651Google Scholar

    Lü L Y 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar

    [48]

    Newman M E 2006 Proc. Natl. Acad. Sci. 103 8577Google Scholar

    [49]

    Jiang Y, Jia C, Yu J 2013 Phys. A: Stat. Mech. Appl. 392 2182Google Scholar

    [50]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [51]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [52]

    许小可, 崔文阔, 崔丽艳, 肖婧, 尚可可 2019 电子科技大学学报 48 122Google Scholar

    Xu X K, Cui W K, Cui L Y, Xiao J, Shang K K 2019 J. Univ. Electron. Sci. Technol. China 48 122Google Scholar

    [53]

    Zeng Y, Liu B, Zhou F, Lü L 2023 Entropy 25 1390Google Scholar

    [54]

    Bick C, Gross E, Harrington H A, Schaub M T 2023 SIAM Rev. 65 686Google Scholar

    [55]

    Feng Y, You H, Zhang Z, Ji R, Gao Y 2019 Proceedings of the AAAI Conference on Artificial Intelligence 33 3558Google Scholar

    [56]

    Zhu J, Zhu J, Ghosh S, Wu W, Yuan J 2018 IEEE Trans. Netw. Sci. Eng. 6 801Google Scholar

    [57]

    Viñas R, Joshi C K, Georgiev D, Lin P, Dumitrascu B, Gamazon E R, Liò P 2023 Nat. Mach. Intell. 5 739Google Scholar

    [58]

    Huang J, Zhang S, Yang F, Yu T, Prasad L N, Guduri M, Yu K 2023 IEEE Trans. Consum. Electron. 1 1775Google Scholar

    [59]

    Ruggeri N, Contisciani M, Battiston F, De Bacco C 2023 Sci. Adv. 9 eadg9159Google Scholar

    [60]

    Wu H, Li N, Zhang J, Chen S, Ng M K, Long J 2024 Pattern Recognit. 146 109995Google Scholar

    [61]

    Mancastroppa M, Iacopini I, Petri G, Barrat A 2023 Nat. Commun. 14 6223Google Scholar

    [62]

    Gao Y, Feng Y, Ji S, Ji R 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 3181Google Scholar

    [63]

    Li Z, Deng Z, Han Z, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Chaos Solit. Fractals 152 111307Google Scholar

    [64]

    Gambuzza L V, Di Patti F, Gallo L, et al. 2021 Nat. Commun. 12 1255Google Scholar

    [65]

    Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar

    [66]

    Benson A R, Abebe R, Schaub M T, Jadbabaie A, Kleinberg J 2018 Proc. Natl. Acad. Sci. 115 E11221Google Scholar

    [67]

    Shi D, Chen Z, Sun X, Chen Q, Ma C, Lou Y, Chen G 2021 Commun. Phys. 4 249Google Scholar

    [68]

    Reimann M W, Nolte M, Scolamiero M, et al. 2017 Front. Comput. Neurosci. 11 48Google Scholar

    [69]

    Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R F, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar

    [70]

    Kovalenko K, Sendiña-Nadal I, Khalil N, et al. 2021 Commun. Phys. 4 43Google Scholar

    [71]

    Holland P W, Leinhardt S 1971 Comp. Group Stud. 2 107Google Scholar

    [72]

    Estrada E, Rodríguez-Velázquez J A 2006 Phys. A: Stat. Mech. Appl. 364 581Google Scholar

    [73]

    Carletti T, Battiston F, Cencetti G, Fanelli D 2020 Phys. Rev. E 101 022308Google Scholar

    [74]

    Carletti T, Fanelli D, Lambiotte R 2021 J. Phys.: Complex. 2 015011Google Scholar

    [75]

    Aksoy S G, Joslyn C, Marrero C O, Praggastis B, Purvine E 2020 EPJ Data Sci. 9 16Google Scholar

    [76]

    Lu L, Peng X 2013 Internet Math. 9 3Google Scholar

    [77]

    Vasilyeva E, Romance M, Samoylenko I, Kovalenko K, Musatov D, Raigorodskii A M, Boccaletti S 2023 Entropy 25 923Google Scholar

    [78]

    Gao J, Zhao Q, Ren W, Swami A, Ramanathan R, Bar-Noy A 2014 IEEE/ACM Trans. Netw. 23 1805Google Scholar

    [79]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar

    [80]

    Bauer F, Hua B, Jost J, Liu S, Wang G 2017 Modern Approaches to Discrete Curvature (Cham: Springer) pp1−62

    [81]

    Samal A, Sreejith R, Gu J, Liu S, Saucan E, Jost J 2018 Sci. Rep. 8 8650Google Scholar

    [82]

    Leal W, Restrepo G, Stadler P F, Jost J 2021 Adv. Complex Syst. 24 2150003Google Scholar

    [83]

    Eidi M, Farzam A, Leal W, Samal A, Jost J 2020 Theory Biosci. 139 337Google Scholar

    [84]

    Bauer F, J Jost, S Liu 2012 Math. Res. Lett. 19 1185

    [85]

    Eidi M, Jost J 2020 Sci. Rep. 10 12466Google Scholar

    [86]

    Kapoor K, Sharma D, Srivastava J 2013 IEEE 2nd Network Science Workshop New York, USA, April 29–May 1, 2013 p152

    [87]

    Granovetter M S 1973 Am. J. Sociol. 78 1360Google Scholar

    [88]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar

    [89]

    Xiao Q 2013 Res. J. Appl. Sci. Eng. Technol. 5 568Google Scholar

    [90]

    Lee J, Lee Y, Oh S M, Kahng B 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 061108Google Scholar

    [91]

    Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar

    [92]

    Benson A R 2019 SIAM J. Math. Data Sci. 1 293Google Scholar

    [93]

    Lemmens B, Nussbaum R 2012 Nonlinear Perron-frobenius Theory (Vol. 189) (Cambridge: Cambridge University Press) pp2−4

    [94]

    Clausius R 1879 The Mechanical Theory of Heat (Macmillan) pp327−365

    [95]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [96]

    Bloch I, Bretto A 2019 Discrete Geometry for Computer Imagery: 21st IAPR International Conference Marne-la-Vallée, France, March 26–28, 2019 pp143–154

    [97]

    Hu D, Li X L, Liu X G, Zhang S G 2019 Acta Math. Sin. Engl. Ser. 35 1238Google Scholar

    [98]

    Wang H, Xiao G, Yan Y, Suter D 2018 IEEE Trans. Pattern Anal. Mach. Intell. 41 697Google Scholar

    [99]

    Goldberg T E 2002 Sr. Thesis Bard Coll. 6 25

    [100]

    Estrada E, Ross G J 2018 J. Theor. Biol. 438 46Google Scholar

    [101]

    Serrano D H, Hernández-Serrano J, Gómez D S 2020 Chaos Solit. Fractals 137 109839Google Scholar

    [102]

    Serrano D H, Gómez D S 2020 Appl. Math. Comput. 382 125331Google Scholar

    [103]

    Bonacich P 2007 Soc. Netw. 29 555Google Scholar

    [104]

    Katz L 1953 Psychometrika 18 39Google Scholar

    [105]

    Estrada E, Knight P A 2015 A First Course in Network Theory (Oxford: Oxford University Press) pp157−160

    [106]

    Okamoto K, Chen W, Li X Y 2008 International Workshop on Frontiers in Algorithmics Changsha China, June 19–21, 2008 pp186–195

    [107]

    Newman M E 2005 Soc. Netw. 27 39Google Scholar

    [108]

    Maletić S, Rajković M, Vasiljević D 2008 Computational Science–ICCS 2008: 8th International Conference Kraków Poland, June 23–25, 2008 pp568–575

    [109]

    Shi D, Lü L, Chen G 2019 Natl. Sci. Rev. 6 962Google Scholar

  • 图 1  两种不同类型超图的简单示例 (a) 一个拥有11个节点的超图; (b) 一个拥有9个节点的3-均匀超图

    Figure 1.  A simple example of two different types of hypergraphs: (a) Simple hypergraph with 11 nodes; (b) 3-uniform hypergraph with 9 nodes.

    图 2  单纯形网络相关示意图 (a) 一组时序高阶交互数据; (b) 一个11节点的单纯形网络; (c) 基于图(b)中单纯形网络的骨架网络; (d)一个11节点的团复形网络

    Figure 2.  Correlation diagrams of the simplicial network: (a) A set of temporal higher-order interaction data; (b) a simplicial network with 11 nodes; (c) a skeleton network based on the simplicial network in Fig. 2(b); (d) a clique complex with 11 nodes.

    图 3  一个3条超边的超图和其对应的加权线图[73] (a) 一个3条超边的超图; (b) 图3(a)对应的加权线图

    Figure 3.  A hypergraph with 3 hyperedges and its corresponding weighted line graph[73]: (a) A hypergraph with 3 hyperedges; (b) a weighted line graph corresponding to Fig. 3(a).

    图 4  不同情形下两个超节点之间的路径示意图[73]

    Figure 4.  Diagram of the path between two hypernodes in different cases[73].

    图 5  一个具有5条超边的超图的k-核分解示意图[61]

    Figure 5.  Diagram of a k-core decomposition of a hypergraph with 5 hyperedges[61].

    表 1  基于超图的统计指标总结

    Table 1.  Summary of statistical indicators of the hypergraph

    指标类型 指标名称
    度相关指标 度、超度、超边度、余平均度
    聚集系数 节点的聚集系数、网络的聚集系数
    距离相关指标 路径长度、超节点之间的距离
    密度相关指标 超边密度、超图密度
    曲率相关指标 Forman-Ricci曲率、Ollivier-Ricci曲率
    中心性指标 度中心性、核心度中心性、接近中心性、
    介数中心性、特征向量中心性
    熵相关指标 超图熵、超图的香农熵、加权超图的超图熵
    DownLoad: CSV

    表 2  基于单纯形网络的统计指标总结

    Table 2.  Summary of statistical indicators of the simplicial network

    指标类型 指标名称
    度相关指标 上邻接度、下邻接度、度、上 p 邻接度、下 p 邻接度、严格上 p 邻接度、严格下 p 邻接度、
    上$(h, p)$邻接度、下$(h, p)$邻接度、p 邻接度、最大 p 邻接度、最大单纯形度
    路径和距离相关指标 $s_k$游走、p 游走、最短路径长度、离心率、直径
    中心性指标 度中心性、特征向量中心性、Katz中心性、接近中心性、介数中心性
    聚集系数 聚集系数
    拓扑不变量 贝蒂数、欧拉示性数
    DownLoad: CSV
  • [1]

    Marin A, Wellman B 2011 Social network analysis: An introduction (London: SAGE publications) pp11−25

    [2]

    Kossinets G, Watts D J 2006 Science 311 88Google Scholar

    [3]

    Alon U 2003 Science 301 1866Google Scholar

    [4]

    Alm E, Arkin A P 2003 Curr. Opin. Struct. Biol. 13 193Google Scholar

    [5]

    Bose A, Clements K A 1987 Proc. IEEE 75 1607Google Scholar

    [6]

    Wu F F, Varaiya P 1999 Int. J. Electr. Power Energy Syst. 21 75Google Scholar

    [7]

    Williams J C, Mahmassani H S, Herman R 1987 Transp. Res. Rec. 1112 78

    [8]

    Verma T, Araújo N A, Herrmann H J 2014 Sci. Rep. 4 5638Google Scholar

    [9]

    Strogatz S H 2001 Nature 410 268Google Scholar

    [10]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [11]

    Costa L D F, Rodrigues F A, Travieso G, Villas Boas P R 2007 Adv. Phys. 56 167Google Scholar

    [12]

    Barabási A L 2013 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 20120375Google Scholar

    [13]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (高等教育出版社) 第82页

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Higher Education Press) p82

    [14]

    周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar

    [15]

    Courtney O T, Bianconi G 2017 Phys. Rev. E 95 062301Google Scholar

    [16]

    Lung R I, Gaskó N, Suciu M A 2018 Scientometrics 117 1361Google Scholar

    [17]

    Pearcy N, Crofts J J, Chuzhanova N 2014 Int. J. Biol. Vet. Agric. Food Eng. 8 752

    [18]

    Mastrandrea R, Fournet J, Barrat A 2015 PloS One 10 e0136497Google Scholar

    [19]

    Stehlé J, Voirin N, Barrat A, et al. 2011 PloS One 6 e23176Google Scholar

    [20]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar

    [21]

    Battiston F, Amico E, Barrat A, et al. 2021 Nat. Phys. 17 1093Google Scholar

    [22]

    Bianconi G 2021 Higher-order Networks (Cambridge: Cambridge University Press) pp7–45

    [23]

    Shi D, Chen G 2022 Natl. Sci. Rev. 9 nwac038Google Scholar

    [24]

    Zhao D, Li R, Peng H, Zhong M, Wang W 2022 Chaos Solit. Fractals 155 111701Google Scholar

    [25]

    Wang W, Li W, Lin T, Wu T, Pan L, Liu Y 2022 Appl. Math. Comput. 420 126793Google Scholar

    [26]

    Millán A P, Torres J J, Bianconi G 2020 Phys. Rev. Lett. 124 218301Google Scholar

    [27]

    Lucas M, Cencetti G, Battiston F 2020 Phys. Rev. Res. 2 033410Google Scholar

    [28]

    Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 1Google Scholar

    [29]

    Chowdhary S, Kumar A, Cencetti G, Iacopini I, Battiston F 2021 J. Phys.: Complex. 2 035019Google Scholar

    [30]

    陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀 2024 物理学报 73 038901Google Scholar

    Chen H Y, Xu T, Liu C, Zhang Z K, Zhan X X 2024 Acta Phys. Sin. 73 038901Google Scholar

    [31]

    Gómez-Gardenes J, Gómez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701Google Scholar

    [32]

    Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A, Perc M, Boccaletti S 2021 Phys. Rev. Lett. 127 258301Google Scholar

    [33]

    Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar

    [34]

    Zhang Y, Latora V, Motter A E 2021 Commun. Phys. 4 195Google Scholar

    [35]

    Kundu S, Ghosh D 2022 Phys. Rev. E 105 L042202Google Scholar

    [36]

    Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar

    [37]

    Wang W, Wang Z X, Cai S M 2018 Phys. Rev. E 98 052312Google Scholar

    [38]

    Guilbeault D, Becker J, Centola D 2018 Complex Spreading Phenomena in Social Systems (Cham: Springer) pp3−25

    [39]

    Wang W, Liu Q H, Liang J, Hu Y, Zhou T 2019 Phys. Rep. 820 1Google Scholar

    [40]

    Wang D, Zhao Y, Luo J, Leng H 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 053112Google Scholar

    [41]

    王兆慧, 沈华伟, 曹婍, 程学旗 2011 软件学报 33 171Google Scholar

    Wang Z H, Shen H W, Cao Q, Cheng X Q 2011 J. Softw. 33 171Google Scholar

    [42]

    Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [43]

    任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar

    [44]

    李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar

    Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar

    [45]

    Lü L, Zhou T 2011 Phys. A: Stat. Mech. Appl. 390 1150Google Scholar

    [46]

    Liu B, Yang R, Lü L 2023 Chaos: Interdiscip. J. Nonlinear Sci. 33 083108Google Scholar

    [47]

    吕琳媛 2010 电子科技大学学报 39 651Google Scholar

    Lü L Y 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar

    [48]

    Newman M E 2006 Proc. Natl. Acad. Sci. 103 8577Google Scholar

    [49]

    Jiang Y, Jia C, Yu J 2013 Phys. A: Stat. Mech. Appl. 392 2182Google Scholar

    [50]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [51]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [52]

    许小可, 崔文阔, 崔丽艳, 肖婧, 尚可可 2019 电子科技大学学报 48 122Google Scholar

    Xu X K, Cui W K, Cui L Y, Xiao J, Shang K K 2019 J. Univ. Electron. Sci. Technol. China 48 122Google Scholar

    [53]

    Zeng Y, Liu B, Zhou F, Lü L 2023 Entropy 25 1390Google Scholar

    [54]

    Bick C, Gross E, Harrington H A, Schaub M T 2023 SIAM Rev. 65 686Google Scholar

    [55]

    Feng Y, You H, Zhang Z, Ji R, Gao Y 2019 Proceedings of the AAAI Conference on Artificial Intelligence 33 3558Google Scholar

    [56]

    Zhu J, Zhu J, Ghosh S, Wu W, Yuan J 2018 IEEE Trans. Netw. Sci. Eng. 6 801Google Scholar

    [57]

    Viñas R, Joshi C K, Georgiev D, Lin P, Dumitrascu B, Gamazon E R, Liò P 2023 Nat. Mach. Intell. 5 739Google Scholar

    [58]

    Huang J, Zhang S, Yang F, Yu T, Prasad L N, Guduri M, Yu K 2023 IEEE Trans. Consum. Electron. 1 1775Google Scholar

    [59]

    Ruggeri N, Contisciani M, Battiston F, De Bacco C 2023 Sci. Adv. 9 eadg9159Google Scholar

    [60]

    Wu H, Li N, Zhang J, Chen S, Ng M K, Long J 2024 Pattern Recognit. 146 109995Google Scholar

    [61]

    Mancastroppa M, Iacopini I, Petri G, Barrat A 2023 Nat. Commun. 14 6223Google Scholar

    [62]

    Gao Y, Feng Y, Ji S, Ji R 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 3181Google Scholar

    [63]

    Li Z, Deng Z, Han Z, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Chaos Solit. Fractals 152 111307Google Scholar

    [64]

    Gambuzza L V, Di Patti F, Gallo L, et al. 2021 Nat. Commun. 12 1255Google Scholar

    [65]

    Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar

    [66]

    Benson A R, Abebe R, Schaub M T, Jadbabaie A, Kleinberg J 2018 Proc. Natl. Acad. Sci. 115 E11221Google Scholar

    [67]

    Shi D, Chen Z, Sun X, Chen Q, Ma C, Lou Y, Chen G 2021 Commun. Phys. 4 249Google Scholar

    [68]

    Reimann M W, Nolte M, Scolamiero M, et al. 2017 Front. Comput. Neurosci. 11 48Google Scholar

    [69]

    Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R F, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar

    [70]

    Kovalenko K, Sendiña-Nadal I, Khalil N, et al. 2021 Commun. Phys. 4 43Google Scholar

    [71]

    Holland P W, Leinhardt S 1971 Comp. Group Stud. 2 107Google Scholar

    [72]

    Estrada E, Rodríguez-Velázquez J A 2006 Phys. A: Stat. Mech. Appl. 364 581Google Scholar

    [73]

    Carletti T, Battiston F, Cencetti G, Fanelli D 2020 Phys. Rev. E 101 022308Google Scholar

    [74]

    Carletti T, Fanelli D, Lambiotte R 2021 J. Phys.: Complex. 2 015011Google Scholar

    [75]

    Aksoy S G, Joslyn C, Marrero C O, Praggastis B, Purvine E 2020 EPJ Data Sci. 9 16Google Scholar

    [76]

    Lu L, Peng X 2013 Internet Math. 9 3Google Scholar

    [77]

    Vasilyeva E, Romance M, Samoylenko I, Kovalenko K, Musatov D, Raigorodskii A M, Boccaletti S 2023 Entropy 25 923Google Scholar

    [78]

    Gao J, Zhao Q, Ren W, Swami A, Ramanathan R, Bar-Noy A 2014 IEEE/ACM Trans. Netw. 23 1805Google Scholar

    [79]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar

    [80]

    Bauer F, Hua B, Jost J, Liu S, Wang G 2017 Modern Approaches to Discrete Curvature (Cham: Springer) pp1−62

    [81]

    Samal A, Sreejith R, Gu J, Liu S, Saucan E, Jost J 2018 Sci. Rep. 8 8650Google Scholar

    [82]

    Leal W, Restrepo G, Stadler P F, Jost J 2021 Adv. Complex Syst. 24 2150003Google Scholar

    [83]

    Eidi M, Farzam A, Leal W, Samal A, Jost J 2020 Theory Biosci. 139 337Google Scholar

    [84]

    Bauer F, J Jost, S Liu 2012 Math. Res. Lett. 19 1185

    [85]

    Eidi M, Jost J 2020 Sci. Rep. 10 12466Google Scholar

    [86]

    Kapoor K, Sharma D, Srivastava J 2013 IEEE 2nd Network Science Workshop New York, USA, April 29–May 1, 2013 p152

    [87]

    Granovetter M S 1973 Am. J. Sociol. 78 1360Google Scholar

    [88]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar

    [89]

    Xiao Q 2013 Res. J. Appl. Sci. Eng. Technol. 5 568Google Scholar

    [90]

    Lee J, Lee Y, Oh S M, Kahng B 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 061108Google Scholar

    [91]

    Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar

    [92]

    Benson A R 2019 SIAM J. Math. Data Sci. 1 293Google Scholar

    [93]

    Lemmens B, Nussbaum R 2012 Nonlinear Perron-frobenius Theory (Vol. 189) (Cambridge: Cambridge University Press) pp2−4

    [94]

    Clausius R 1879 The Mechanical Theory of Heat (Macmillan) pp327−365

    [95]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [96]

    Bloch I, Bretto A 2019 Discrete Geometry for Computer Imagery: 21st IAPR International Conference Marne-la-Vallée, France, March 26–28, 2019 pp143–154

    [97]

    Hu D, Li X L, Liu X G, Zhang S G 2019 Acta Math. Sin. Engl. Ser. 35 1238Google Scholar

    [98]

    Wang H, Xiao G, Yan Y, Suter D 2018 IEEE Trans. Pattern Anal. Mach. Intell. 41 697Google Scholar

    [99]

    Goldberg T E 2002 Sr. Thesis Bard Coll. 6 25

    [100]

    Estrada E, Ross G J 2018 J. Theor. Biol. 438 46Google Scholar

    [101]

    Serrano D H, Hernández-Serrano J, Gómez D S 2020 Chaos Solit. Fractals 137 109839Google Scholar

    [102]

    Serrano D H, Gómez D S 2020 Appl. Math. Comput. 382 125331Google Scholar

    [103]

    Bonacich P 2007 Soc. Netw. 29 555Google Scholar

    [104]

    Katz L 1953 Psychometrika 18 39Google Scholar

    [105]

    Estrada E, Knight P A 2015 A First Course in Network Theory (Oxford: Oxford University Press) pp157−160

    [106]

    Okamoto K, Chen W, Li X Y 2008 International Workshop on Frontiers in Algorithmics Changsha China, June 19–21, 2008 pp186–195

    [107]

    Newman M E 2005 Soc. Netw. 27 39Google Scholar

    [108]

    Maletić S, Rajković M, Vasiljević D 2008 Computational Science–ICCS 2008: 8th International Conference Kraków Poland, June 23–25, 2008 pp568–575

    [109]

    Shi D, Lü L, Chen G 2019 Natl. Sci. Rev. 6 962Google Scholar

  • [1] Luo Kai-Ming, Guan Shu-Guang, Zou Yong. Reconstruction of simplex structures based on phase synchronization dynamics. Acta Physica Sinica, 2024, 73(12): 120501. doi: 10.7498/aps.73.20240334
    [2] Chen Hao-Yu, Xu Tao, Liu Chuang, Zhang Zi-Ke, Zhan Xiu-Xiu. Network similarity comparison method based on higher-order information. Acta Physica Sinica, 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [3] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [4] Ke Hang, Li Pei-Li, Shi Wei-Hua. Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm. Acta Physica Sinica, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [5] Chen Wei-Ying, Pan Jian-Chen, Han Wen-Chen, Huang Chang-Wei. Evolutionary public goods games on hypergraphs with heterogeneous multiplication factors. Acta Physica Sinica, 2022, 71(11): 110201. doi: 10.7498/aps.70.20212436
    [6] Lu Wen, Zhao Hai-Xing, Meng Lei, Hu Feng. Double-layer hypernetwork model with bimodal peak characteristics. Acta Physica Sinica, 2021, 70(1): 018901. doi: 10.7498/aps.70.20201065
    [7] Song Yu-Ping, Ni Jing. Effect of variable network clustering on the accuracy of node centrality. Acta Physica Sinica, 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [8] Ma Xiu-Juan, Zhao Hai-Xing, Hu Feng. Cascading failure analysis in hyper-network based on the hypergraph. Acta Physica Sinica, 2016, 65(8): 088901. doi: 10.7498/aps.65.088901
    [9] Shu Pan-Pan, Wang Wei, Tang Ming, Shang Ming-Sheng. Discriminability of node influence in flower fractal scale-free networks. Acta Physica Sinica, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [10] Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Huang Xiao-Lin. Phase synchrony in the cerebral infarction electroencephalogram based on the degree of network-links. Acta Physica Sinica, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [11] Guo Jin-Li. Emergence of scaling in non-uniform hypernetworksdoes the rich get richer lead to a power-law distribution?. Acta Physica Sinica, 2014, 63(20): 208901. doi: 10.7498/aps.63.208901
    [12] Guo Jin-Li, Zhu Xin-Yun. Emergence of scaling in hypernetworks. Acta Physica Sinica, 2014, 63(9): 090207. doi: 10.7498/aps.63.090207
    [13] Hu Feng, Zhao Hai-Xing, He Jia-Bei, Li Fa-Xu, Li Shu-Ling, Zhang Zi-Ke. An evolving model for hypergraph-structure-based scientific collaboration networks. Acta Physica Sinica, 2013, 62(19): 198901. doi: 10.7498/aps.62.198901
    [14] Lü Tian-Yang, Xie Wen-Yan, Zheng Wei-Min, Piao Xiu-Feng. Analysis of community evaluation criterion and discovery algorithm of weighted complex network. Acta Physica Sinica, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [15] Wang Jing-Xin, Wang Yue, Li Yi-Peng, Yuan Jian, Shan Xiu-Ming, Feng Zhen-Ming, Ren Yong. Popularity based network statistical analysis in peer-to-peer application. Acta Physica Sinica, 2011, 60(11): 118901. doi: 10.7498/aps.60.118901
    [16] Ren Yong, Yuan Jian, Wang Yue, Shan Xiu-Ming, Li Yi-Peng, Huang Xiao-Hong. Network statistical analysis in peer-to-peer application. Acta Physica Sinica, 2011, 60(5): 058901. doi: 10.7498/aps.60.058901
    [17] Xing Chang-Ming, Liu Fang-Ai. Research on the deterministic complex network model based on the Sierpinski network. Acta Physica Sinica, 2010, 59(3): 1608-1614. doi: 10.7498/aps.59.1608
    [18] Wang Gao-Xia, Shen Yi. Modularity matrix of networks and the measure of community structure. Acta Physica Sinica, 2010, 59(2): 842-850. doi: 10.7498/aps.59.842
    [19] Gao Zhong-Ke, Jin Ning-De. Complex network community structure of two-phase flow pattern and its statistical characteristics. Acta Physica Sinica, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [20] Community structure in small-world and scale-free networks. Acta Physica Sinica, 2007, 56(12): 6886-6893. doi: 10.7498/aps.56.6886
Metrics
  • Abstract views:  4097
  • PDF Downloads:  300
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2024
  • Accepted Date:  10 April 2024
  • Available Online:  11 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回