Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of magnetic susceptibility of Mn3Sn single crystal under GPa-level uniaxial stress

Deng Shan-Shan Song Ping Liu Xiao-He Yao Sen Zhao Qian-Yi

Citation:

Enhancement of magnetic susceptibility of Mn3Sn single crystal under GPa-level uniaxial stress

Deng Shan-Shan, Song Ping, Liu Xiao-He, Yao Sen, Zhao Qian-Yi
PDF
HTML
Get Citation
  • How to achieve spin control of noncollinear antiferromagnetic Mn3Sn at room temperature is a challenge. In this study, we modulate the magnetic structure of Mn3Sn single crystals by subjecting them to uniaxial stress at the GPa level using a high-pressure combined deformation method. Initially, the single crystal is sliced into regular cuboids, then embedded in a stainless steel sleeve, and finally, uniaxial stress is applied along the $ \text{[11}\bar{2}\text{0]} $ direction and $ \text{[01}\bar{1}\text{0]} $ direction of the Mn3Sn single crystal. Under high stress, the single crystal undergoes plastic deformation. Our observations reveal lattice distortion in the deformed single crystal, with the lattice parameter gradually decreasing as the stress level increases. In addition, the magnetic susceptibility of Mn3Sn under GPa uniaxial stress (χ) is different from that under MPa uniaxial stress, and its value is no longer fixed but increases with the increase of stress. When 1.12 GPa stress is applied in the $ \text{[11}\bar{2}\text{0]} $ direction, χ reaches 0.0203 $ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $, which is 1.42 times that of the undeformed sample. In the case of stress applied along the $ \text{[01}\bar{1}\text{0]} $ direction, χ ≈ 0.0332 $ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $ when the stress is 1.11 GPa. This result is also 2.66 times greater than the reported results. We further calculate the values of trimerization parameter (ξ), isotropic Heisenberg exchange interaction (J), and anisotropic energy (δ) of the system under different stresses. Our results show that ξ gradually increases, J gradually decreases, and δ gradually increases with the increase of stress. These results show that the GPa uniaxial stress introduces anisotropic strain energy into the single crystal, breaking the symmetry of the in-plane hexagon of the kagome lattice, which causes the bond length of the two equilateral triangles composed of Mn atoms to change. Thus, the exchange coupling between Mn atoms in the system is affected, the anisotropy of the system is enhanced, and the antiferromagnetic coupling of the system is enhanced. Therefore, the system χ is no longer a constant value and gradually increases with the increase of stress. This discovery will provide new ideas for regulating the anti-ferromagnetic spin.
      Corresponding author: Song Ping, psong@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52101233, 51931007, U22A20116, 52071279, 52101234, 52371200), the Natural Science Foundation of Hebei Province, China (Grant No. E2022203010), and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H).
    [1]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [2]

    Li X, Koo J, Zhu Z, Behnia K, Yan B 2023 Nat. Commun. 14 1642Google Scholar

    [3]

    Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K, Nayak A K 2020 Phys. Rev. Res. 2 043366Google Scholar

    [4]

    Higo T, Qu D R, Li Y F, Chien C L, Otani Y, Nakatsuji S 2018 Appl. Phys. Lett. 113 202402Google Scholar

    [5]

    Matsuda T, Higo T, Koretsune T, Kanda N, Hirai Y, Peng H, Matsuo T, Yoshikawa N, Shimano R, Nakatsuji S, Matsunaga R 2023 Phys. Rev. Lett. 130 126302Google Scholar

    [6]

    Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q, Shen J 2022 Chin. Phys. Lett. 39 108501Google Scholar

    [7]

    Rout P K, Madduri P V P, Manna S K, Nayak A K 2019 Phys. Rev. B 99 094430Google Scholar

    [8]

    Yan J, Luo X, Lv H Y, Sun Y, Tong P, Lu W J, Zhu X B, Song W H, Sun Y P 2019 Appl. Phys. Lett. 115 102404Google Scholar

    [9]

    Low A, Ghosh S, Changdar S, Routh S, Purwar S, Thirupathaiah S 2022 Phys. Rev. B 106 144429Google Scholar

    [10]

    Xiong D R, Jiang Y H, Zhu D Q, Du A, Guo Z X, Lu S Y, Wang C X, Xia Q T, Zhu D P, Zhao W S 2023 Chin. Phys. B 32 057501Google Scholar

    [11]

    Ma H Y, Yin J X, Hasan M Z, Liu J P 2024 Chin. Phys. Lett. 41 047103Google Scholar

    [12]

    Guo G Y, Wang T C 2017 Phys. Rev. B 96 224415Google Scholar

    [13]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [14]

    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T, Ikhlas M, Sakamoto S, Otani Y, Mizukami S, Arita R, Nakatsuji S 2021 Small Science 1 2000062Google Scholar

    [15]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, van’t Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nat. Photonics. 12 73Google Scholar

    [16]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [17]

    Bauer G E W, Saitoh E, Van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Cui B, Cheng B, Hu J F 2021 Chin. Sci. Bull. 66 2042Google Scholar

    [19]

    闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清 2014 物理学报 63 167502Google Scholar

    Yan J, Sun Y, Wang C, Shi Z X, Deng S H, Shi K W, Lu H Q 2014 Acta Phys. Sin. 63 167502Google Scholar

    [20]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良, 2023 物理学报 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [21]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [22]

    Fang H W, Lyu M, Su H, Yuan J, Li Y W, Xu L X, Liu S, Wei L Y, Liu X Q, Yang H F, Yao Q, Wang M X, Guo Y F, Shi W J, Chen Y L, Liu E K, Liu Z K 2023 Sci. China Mater. 66 2032Google Scholar

    [23]

    An N, Tang M, Hu S, Yang H L, Fan W J, Zhou S M, Qiu X P 2020 Sci. China Phys. Mech. Astron. 63 297511Google Scholar

    [24]

    Li X K, Jiang S, Meng Q K, Zuo H K, Zhu Z W, Balents L, Behnia K 2022 Phys. Rev. B 106 L020402Google Scholar

    [25]

    Yu T Y, Liu R, Peng Y R, Zheng P Y, Wang G W, Ma X B, Yuan Z H, Yin Z P 2022 Phys. Rev. B 106 205103Google Scholar

    [26]

    赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光 2018 物理学报 67 131205Google Scholar

    Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N, Zhang Y G 2018 Acta Phys. Sin. 67 131205Google Scholar

    [27]

    谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛 2024 物理学报 73 067501Google Scholar

    Tan B, Gao D, Deng D F, Chen S Y, Bi L, Liu D H, Liu T 2024 Acta Phys. Sin. 73 067501Google Scholar

    [28]

    Nagamiya T 1979 J. Phys. Soc. Japan 46 787Google Scholar

    [29]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [30]

    Song C, You Y F, Chen X Z, Zhou X F, Wang Y Y, Pan F 2018 Nanotechnology 29 112001Google Scholar

    [31]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [32]

    Coileáin C Ó, Wu H C 2017 SPIN 07 1740014Google Scholar

    [33]

    Jungfleisch M B, Zhang W, Hoffmann A 2018 Phys. Lett. A 382 865Google Scholar

    [34]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [35]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [36]

    Sokolov D A, Kikugawa N, Helm T, Borrmann H, Burkhardt U, Cubitt R, White J S, Ressouche E, Bleuel M, Kummer K, Mackenzie A P, Rößler U K 2019 Nat. Phys. 15 671Google Scholar

    [37]

    Deng Y C, Liu X H, Chen Y, Du Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [38]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [39]

    Liu X H, Zhang D, Deng Y C, Jiang N, Zhang E Z, Shen C, Chang K, Wang K Y 2024 ACS Nano 18 1013Google Scholar

    [40]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [41]

    Wang X N, Feng Z X, Qin P X, Yan H, Zhou X R, Guo H X, Leng Z G G, Chen W Q, Jia Q N, Hu Z X, Wu H J, Zhang X Y, Jiang C B, Liu Z Q 2019 Acta Mater. 181 537Google Scholar

    [42]

    Ikhlas M, Dasgupta S, Theuss F, Higo T, Kittaka S, Ramshaw B J, Tchernyshyov O, Hicks C W, Nakatsuji S 2022 Nat. Phys. 18 1086Google Scholar

    [43]

    Song P, Li G K, Ma L, Zhen C M, Hou D L, Wang W H, Liu E K, Chen J L, Wu G H 2014 J. Appl. Phys. 115 213907Google Scholar

    [44]

    Liu Y G, Xu L, Wang Q F, Li W, Zhang X Y 2009 Appl. Phys. Lett. 94 172502Google Scholar

    [45]

    Li X H, Lou L, Song W P, Huang G W, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Adv. Mater. 29 1606430Google Scholar

    [46]

    Huang G W, Zhu G J, Lou L, Yan J C, Song W P, Hou F C, Hua Y X, Zhang Q, Li X H, Zhang X Y 2018 Mater. Lett. 217 219Google Scholar

    [47]

    Zhang X Y 2020 Mater. Res. Lett. 8 49Google Scholar

    [48]

    Zhang H T, Zhang T, Zhang X Y 2023 Adv. Sci. 10 2300193Google Scholar

    [49]

    Lou L, Li Y Q, Li X H, Li H, Li W, Hua Y X, Xia W, Zhao Z, Zhang H T, Yue M, Zhang X Y 2021 Adv. Mater. 33 2102800Google Scholar

    [50]

    Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, Li W, Zhang H T, Yue M, Zhang X Y 2022 Nano Lett. 22 7644Google Scholar

    [51]

    Li X H, Lou L, Song W P, Zhang Q, Huang G W, Hua Y X, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Nano Lett. 17 2985Google Scholar

    [52]

    Huang G W, Li X H, Lou L, Hua Y X, Zhu G J, Li M, Zhang H T, Xiao J W, Wen B, Yue M, Zhang X Y 2018 Small 14 1800619Google Scholar

    [53]

    Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V, Popov A G 2007 Appl. Phys. Lett. 91 062509Google Scholar

    [54]

    Rong C B, Zhang Y, Poudyal N, Xiong X Y, Kramer M J, Liu J P 2010 Appl. Phys. Lett. 96 102513Google Scholar

    [55]

    Song P, Yao S, Zhang B X, Jiang B, Deng S S, Guo D F, Ma L, Hou D L 2022 Appl. Phys. Lett. 120 192401Google Scholar

    [56]

    Kandra J T, Lee J Y, Pope D P 1991 Mater. Sci. Eng. A 145 189Google Scholar

    [57]

    Zhang B X, Song P, Deng S S, Lou L, Yao S 2023 Chin. Phys. B 32 087502Google Scholar

    [58]

    Zhao M Y, Guo W, Wu X, Ma L, Song P, Li G K, Zhen C M, Zhao D W, Hou D L 2023 Mater. Horiz. 10 4597Google Scholar

    [59]

    Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M, Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001Google Scholar

    [60]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [61]

    周寿增, 董清飞 2004 超强永磁体: 稀土铁系永磁材料(第2版) (北京: 冶金工业出版社)第59—64页

    Zhou S Z, Dong Q F 2004 Super Permanent Magnet: Rare Earth Iron Permanent Magnet Material (2nd Ed.) (Beijing: Metallurgical Industry Press) pp59–64

    [62]

    Cable J W, Wakabayashi N, Radhakrishna P 1993 Solid State Commun. 88 161Google Scholar

  • 图 1  (a) Mn3Sn晶体结构图; (b) Mn3Sn磁结构图; (c), (d) Sn助熔剂法制得的单晶; (e)晶向标定示意图

    Figure 1.  (a) Mn3Sn crystal structure diagram; (b) Mn3Sn magnetic structure diagram; (c), (d) single crystal obtained by Sn flux method; (e) crystal orientation calibration diagram.

    图 2  Mn3Sn单晶高压变形示意图

    Figure 2.  Schematic diagram of Mn3Sn single crystal deformation under high pressure.

    图 3  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力变形前后的XRD图; (c), (e)变形前$ \text{(11}\bar{2}\text{0)} $, $ \text{(01}\bar{1}\text{0)} $晶面的HRTEM图; (d), (f)变形前$ \text{(11}\bar{2}\text{0)} $, $ \text{(01}\bar{1}\text{0)} $晶面的SAED图; (g), (h)变形后$ \text{(11}\bar{2}\text{0)} $晶面的HRTEM图; (i), (j)变形后$ \text{(01}\bar{1}\text{0)} $晶面的HRTEM图

    Figure 3.  (a), (b) XRD patterns before and after stress deformation along $ \text{[11}\bar{2}\text{0]} $ and $ \text{[01}\bar{1}\text{0]} $ directions; (c), (e) HRTEM images of $ \text{(11}\bar{2}\text{0)} $ and $ \text{(01}\bar{1}\text{0)} $ crystal faces before deformation; (d), (f) SAED patterns of $ \text{(11}\bar{2}\text{0)} $ and $ \text{(01}\bar{1}\text{0)} $ crystal faces before deformation; (g), (h) HRTEM images of $ \text{(11}\bar{2}\text{0)} $ crystal face after deformation; (i), (j) HRTEM images of $ \text{(01}\bar{1}\text{0)} $ crystal face after deformation.

    图 4  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后样品的磁滞回线; (c), (d)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后样品的磁化率χ和剩磁Mr随应力的变化

    Figure 4.  (a), (b) Hysteresis loops of samples before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions; (c), (d) the changes of magnetic susceptibility χ and remanence Mr of sample demagnetization curve with stress before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions.

    图 5  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后三聚参数ξ随应力的变化; (c), (d)黑色曲线为沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力前后单晶的各向同性海森伯交换作用J, 红色曲线为沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力前后单晶的各向异性能δ

    Figure 5.  (a), (b) Changes of trimerization parameters ξ with stress before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions. (c), (d) The black curve shows the isotropic Heisenberg exchange J of a single crystal before and after stress is applied in along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions. The red curve shows the anisotropic energy δ of a single crystal before and after stress is applied in $ \text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions.

  • [1]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [2]

    Li X, Koo J, Zhu Z, Behnia K, Yan B 2023 Nat. Commun. 14 1642Google Scholar

    [3]

    Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K, Nayak A K 2020 Phys. Rev. Res. 2 043366Google Scholar

    [4]

    Higo T, Qu D R, Li Y F, Chien C L, Otani Y, Nakatsuji S 2018 Appl. Phys. Lett. 113 202402Google Scholar

    [5]

    Matsuda T, Higo T, Koretsune T, Kanda N, Hirai Y, Peng H, Matsuo T, Yoshikawa N, Shimano R, Nakatsuji S, Matsunaga R 2023 Phys. Rev. Lett. 130 126302Google Scholar

    [6]

    Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q, Shen J 2022 Chin. Phys. Lett. 39 108501Google Scholar

    [7]

    Rout P K, Madduri P V P, Manna S K, Nayak A K 2019 Phys. Rev. B 99 094430Google Scholar

    [8]

    Yan J, Luo X, Lv H Y, Sun Y, Tong P, Lu W J, Zhu X B, Song W H, Sun Y P 2019 Appl. Phys. Lett. 115 102404Google Scholar

    [9]

    Low A, Ghosh S, Changdar S, Routh S, Purwar S, Thirupathaiah S 2022 Phys. Rev. B 106 144429Google Scholar

    [10]

    Xiong D R, Jiang Y H, Zhu D Q, Du A, Guo Z X, Lu S Y, Wang C X, Xia Q T, Zhu D P, Zhao W S 2023 Chin. Phys. B 32 057501Google Scholar

    [11]

    Ma H Y, Yin J X, Hasan M Z, Liu J P 2024 Chin. Phys. Lett. 41 047103Google Scholar

    [12]

    Guo G Y, Wang T C 2017 Phys. Rev. B 96 224415Google Scholar

    [13]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [14]

    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T, Ikhlas M, Sakamoto S, Otani Y, Mizukami S, Arita R, Nakatsuji S 2021 Small Science 1 2000062Google Scholar

    [15]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, van’t Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nat. Photonics. 12 73Google Scholar

    [16]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [17]

    Bauer G E W, Saitoh E, Van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Cui B, Cheng B, Hu J F 2021 Chin. Sci. Bull. 66 2042Google Scholar

    [19]

    闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清 2014 物理学报 63 167502Google Scholar

    Yan J, Sun Y, Wang C, Shi Z X, Deng S H, Shi K W, Lu H Q 2014 Acta Phys. Sin. 63 167502Google Scholar

    [20]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良, 2023 物理学报 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [21]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [22]

    Fang H W, Lyu M, Su H, Yuan J, Li Y W, Xu L X, Liu S, Wei L Y, Liu X Q, Yang H F, Yao Q, Wang M X, Guo Y F, Shi W J, Chen Y L, Liu E K, Liu Z K 2023 Sci. China Mater. 66 2032Google Scholar

    [23]

    An N, Tang M, Hu S, Yang H L, Fan W J, Zhou S M, Qiu X P 2020 Sci. China Phys. Mech. Astron. 63 297511Google Scholar

    [24]

    Li X K, Jiang S, Meng Q K, Zuo H K, Zhu Z W, Balents L, Behnia K 2022 Phys. Rev. B 106 L020402Google Scholar

    [25]

    Yu T Y, Liu R, Peng Y R, Zheng P Y, Wang G W, Ma X B, Yuan Z H, Yin Z P 2022 Phys. Rev. B 106 205103Google Scholar

    [26]

    赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光 2018 物理学报 67 131205Google Scholar

    Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N, Zhang Y G 2018 Acta Phys. Sin. 67 131205Google Scholar

    [27]

    谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛 2024 物理学报 73 067501Google Scholar

    Tan B, Gao D, Deng D F, Chen S Y, Bi L, Liu D H, Liu T 2024 Acta Phys. Sin. 73 067501Google Scholar

    [28]

    Nagamiya T 1979 J. Phys. Soc. Japan 46 787Google Scholar

    [29]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [30]

    Song C, You Y F, Chen X Z, Zhou X F, Wang Y Y, Pan F 2018 Nanotechnology 29 112001Google Scholar

    [31]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [32]

    Coileáin C Ó, Wu H C 2017 SPIN 07 1740014Google Scholar

    [33]

    Jungfleisch M B, Zhang W, Hoffmann A 2018 Phys. Lett. A 382 865Google Scholar

    [34]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [35]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [36]

    Sokolov D A, Kikugawa N, Helm T, Borrmann H, Burkhardt U, Cubitt R, White J S, Ressouche E, Bleuel M, Kummer K, Mackenzie A P, Rößler U K 2019 Nat. Phys. 15 671Google Scholar

    [37]

    Deng Y C, Liu X H, Chen Y, Du Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [38]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [39]

    Liu X H, Zhang D, Deng Y C, Jiang N, Zhang E Z, Shen C, Chang K, Wang K Y 2024 ACS Nano 18 1013Google Scholar

    [40]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [41]

    Wang X N, Feng Z X, Qin P X, Yan H, Zhou X R, Guo H X, Leng Z G G, Chen W Q, Jia Q N, Hu Z X, Wu H J, Zhang X Y, Jiang C B, Liu Z Q 2019 Acta Mater. 181 537Google Scholar

    [42]

    Ikhlas M, Dasgupta S, Theuss F, Higo T, Kittaka S, Ramshaw B J, Tchernyshyov O, Hicks C W, Nakatsuji S 2022 Nat. Phys. 18 1086Google Scholar

    [43]

    Song P, Li G K, Ma L, Zhen C M, Hou D L, Wang W H, Liu E K, Chen J L, Wu G H 2014 J. Appl. Phys. 115 213907Google Scholar

    [44]

    Liu Y G, Xu L, Wang Q F, Li W, Zhang X Y 2009 Appl. Phys. Lett. 94 172502Google Scholar

    [45]

    Li X H, Lou L, Song W P, Huang G W, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Adv. Mater. 29 1606430Google Scholar

    [46]

    Huang G W, Zhu G J, Lou L, Yan J C, Song W P, Hou F C, Hua Y X, Zhang Q, Li X H, Zhang X Y 2018 Mater. Lett. 217 219Google Scholar

    [47]

    Zhang X Y 2020 Mater. Res. Lett. 8 49Google Scholar

    [48]

    Zhang H T, Zhang T, Zhang X Y 2023 Adv. Sci. 10 2300193Google Scholar

    [49]

    Lou L, Li Y Q, Li X H, Li H, Li W, Hua Y X, Xia W, Zhao Z, Zhang H T, Yue M, Zhang X Y 2021 Adv. Mater. 33 2102800Google Scholar

    [50]

    Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, Li W, Zhang H T, Yue M, Zhang X Y 2022 Nano Lett. 22 7644Google Scholar

    [51]

    Li X H, Lou L, Song W P, Zhang Q, Huang G W, Hua Y X, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Nano Lett. 17 2985Google Scholar

    [52]

    Huang G W, Li X H, Lou L, Hua Y X, Zhu G J, Li M, Zhang H T, Xiao J W, Wen B, Yue M, Zhang X Y 2018 Small 14 1800619Google Scholar

    [53]

    Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V, Popov A G 2007 Appl. Phys. Lett. 91 062509Google Scholar

    [54]

    Rong C B, Zhang Y, Poudyal N, Xiong X Y, Kramer M J, Liu J P 2010 Appl. Phys. Lett. 96 102513Google Scholar

    [55]

    Song P, Yao S, Zhang B X, Jiang B, Deng S S, Guo D F, Ma L, Hou D L 2022 Appl. Phys. Lett. 120 192401Google Scholar

    [56]

    Kandra J T, Lee J Y, Pope D P 1991 Mater. Sci. Eng. A 145 189Google Scholar

    [57]

    Zhang B X, Song P, Deng S S, Lou L, Yao S 2023 Chin. Phys. B 32 087502Google Scholar

    [58]

    Zhao M Y, Guo W, Wu X, Ma L, Song P, Li G K, Zhen C M, Zhao D W, Hou D L 2023 Mater. Horiz. 10 4597Google Scholar

    [59]

    Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M, Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001Google Scholar

    [60]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [61]

    周寿增, 董清飞 2004 超强永磁体: 稀土铁系永磁材料(第2版) (北京: 冶金工业出版社)第59—64页

    Zhou S Z, Dong Q F 2004 Super Permanent Magnet: Rare Earth Iron Permanent Magnet Material (2nd Ed.) (Beijing: Metallurgical Industry Press) pp59–64

    [62]

    Cable J W, Wakabayashi N, Radhakrishna P 1993 Solid State Commun. 88 161Google Scholar

  • [1] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [2] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [3] Qing Yu-Lin, Peng Xiao-Li, Wen Lin, Hu Ai-Yuan. Ground state phase transition of spin-1/2 frustration model on stacked square lattice. Acta Physica Sinica, 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [4] Qing Yu-Lin, Peng Xiao-Li, Hu Ai-Yuan. Phase transition of spin-1 frustrated model on square-lattice bilayer. Acta Physica Sinica, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] The ground state phase transition of the spin-1/2 frustration model on a stacked square lattice. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211584
    [6] Wen Lin, Hu Ai-Yuan. Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet. Acta Physica Sinica, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [7] Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming. Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals. Acta Physica Sinica, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [8] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [9] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [10] Meng Dai-Yi, Shen Lan-Xian, Li De-Cong, Shai Xu-Xia, Deng Shu-Kang. Structural and electrical transport properties of Mg-doped n-type Sn-based type Ⅷ single crystalline clathrate. Acta Physica Sinica, 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [11] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [12] Li Qian-Li, Wen Ting-Dun, Xu Li-Ping, Wang Zhi-Bin. Effect of uniaxial stress on photon localization of one-dimensional photonic crystal with a mirror symmetry. Acta Physica Sinica, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [13] Li Peng-Fei, Cao Hai-Jing, Zheng Li, Jiang Xiu-Li. Behaviors of lattice distortions in the spin 1/2 antiferromagnetic XY model with quasiperiodic modulation. Acta Physica Sinica, 2013, 62(15): 157501. doi: 10.7498/aps.62.157501
    [14] Wang Guan-Yu, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Ma Jian-Li, Wang Xiao-Yan. Analytical dispersion relation model for conduction band of uniaxial strained Si. Acta Physica Sinica, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [15] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [16] Yu Shu-Yun, Liu He-Yan, Qu Jing-Ping, Li Yang-Xian, Liu Zhu-Hong, Chen Jing-Lan, Dai Xue-Fang, Wu Guang-Heng. Effect of Mn doping on properties of NiFeGa ferromagnetic shape memory alloys. Acta Physica Sinica, 2006, 55(6): 3022-3025. doi: 10.7498/aps.55.3022
    [17] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [18] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [19] Wang Guang-Jun, Wang Fang, Shen Bao-Gen. Coexistence of ferromagnetic and antiferromagnetic phases in compound LaFe11.4Al1.6. Acta Physica Sinica, 2005, 54(3): 1410-1414. doi: 10.7498/aps.54.1410
    [20] Zhang Duan-Ming, Yan Wen-Sheng, Zhong Zhi-Cheng, Yang Feng-Xia, Zheng Ke-Yu, Li Zhi-Hua. Study on the relation between the dielectric properties and lattice distortions in PZT ferroelectric tetragonal phase region. Acta Physica Sinica, 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
Metrics
  • Abstract views:  1444
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2024
  • Accepted Date:  28 April 2024
  • Available Online:  29 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回