Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Variations of topological surface states of nodal line semimetal AlB2 after adsorption in aqueous environment

Zhu Pang-Dong Wang Chang-Hao Wang Ru-Zhi

Citation:

Variations of topological surface states of nodal line semimetal AlB2 after adsorption in aqueous environment

Zhu Pang-Dong, Wang Chang-Hao, Wang Ru-Zhi
PDF
HTML
Get Citation
  • Topological semimetals have aroused great research interest due to their intrinsic topological physics and potential applications in devices. A key feature for all topological materials is the so-called bulk-boundary correspondence, which means that if there is non-trivial band topology in the bulk, then we can expect unique topologically protected conducting states in the surface, i.e. the topological surface state (TSS). Previously, the studies of the surface states of topological materials mainly focused on the pristine surfaces, while the topological nodal line semimetal surface states with adsorbates are rarely systematically studied. In this paper, the topological properties of the topological semimetal AlB2 are studied by first-principles calculations, and the TSS position is calculated by constructing the Al- and B-terminated slab models. Observing the topological surface state, it is found that the drumhead-like TSS connects two Dirac nodes with no energy gaps on the node line, and the TSS of the Al end-terminated slab has a smaller energy dispersion than that of the B-terminated slab. The adsorption characteristics of AlB2 (010) surface are studied, and it is found that the Gibbs free energy ($ {\Delta }{G}_{{{\mathrm{H}}}^{*}} $) for hydrogen adsorption on the surface of Al is only –0.031 eV, demonstrating excellent hydrogen evolution reaction (HER) performance. The changes of TSS after H, OH and H2O are adsorbed on the surface of AlB2 in aqueous solution environment are observed. The TSS change is the most significant when H is adsorbed, followed by OH adsorption. And the influence of H2O on TSS due to its electrical neutrality and weak surface adsorption is very weak. Before and after adsorption, because the topology protection TSS still exists, only the energy changes, which confirms its robustness in the environment. The results of this work provide a systematic understanding of the effects of different adsorbents on the TSS of AlB2, paving the way for future theoretical and experimental research in related fields, and alsopresent theoretical support for putting the topological materials into practical applications .
      Corresponding author: Wang Chang-Hao, wangch33@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804012) and the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology, China (Grant No. 048000514123695).
    [1]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [2]

    Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501Google Scholar

    [3]

    Gao H, Venderbos J W F, Kim Y, Rappe A M 2019 Annu. Rev. Mater. Res. 49 153Google Scholar

    [4]

    Yan B, Felser C 2017 Annu. Rev. Conden. Ma. P. 8 337Google Scholar

    [5]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [6]

    Fang C, Weng H M, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [7]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [8]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [9]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Conden. Ma. P. 8 289Google Scholar

    [10]

    Zhu Z M, Yu Z M, Wu W K, Zhang L F, Zhang W, Zhang F, Yang S A 2019 Phys. Rev. B 100 161401Google Scholar

    [11]

    Gao W S, Zhu M C, Chen D, Liang X, Wu Y L, Zhu A K, Han Y Y, Li L, Liu X, Zheng G L, Lu W J, Tian M L 2023 ACS Nano 17 4913Google Scholar

    [12]

    Wang L R, Yang Y, Wang J H, Liu W, Liu Y, Gong J L, Liu G D, Wang X T, Cheng Z X, Zhang X M 2022 EcoMat 5 e12316Google Scholar

    [13]

    Xie R K, Zhang T, Weng H M, Chai G L 2022 Small Sci. 2 2100106Google Scholar

    [14]

    Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H 2022 Small 18 2204380Google Scholar

    [15]

    Wang L, Zhao M, Wang J, Liu Y, Liu G, Wang X, Zhang G, Zhang X 2023 ACS Appl. Mater. Interfaces 15 51225Google Scholar

    [16]

    Chen H, Zhu W G, Xiao D, Zhang Z Y 2011 Phys. Rev. Lett. 107 056804Google Scholar

    [17]

    Li L Q, Zeng J, Qin W, Cui P, Zhang Z Y 2019 Nano Energy 58 40Google Scholar

    [18]

    Qu Q, Liu B, Liang J, Li H, Wang J N, Pan D, Sou I K 2020 ACS Catal. 10 2656Google Scholar

    [19]

    Li G W, Huang J, Yang Q, Zhang L G, Mu Q G, Sun Y, Parkin S, Chang K, Felser C 2021 J. Energy Chem. 62 516Google Scholar

    [20]

    Wei Y H, Ma D S, Yuan H K, Wang X, Kuang M Q 2023 Phys. Rev. B 107 235414Google Scholar

    [21]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Süß V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [22]

    Liu W, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2022 iScience 25 103543Google Scholar

    [23]

    Kong X P, Jiang T, Gao J J, Shi X B, Shao J, Yuan Y H, Qiu H J, Zhao W W 2021 J. Phys. Chem. Lett. 12 3740Google Scholar

    [24]

    Li J X, Ma H, Xie Q, Feng S B, Ullah S, Li R H, Dong J H, Li D Z, Li Y Y, Chen X Q 2018 Sci. China Mater. 61 23Google Scholar

    [25]

    Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D, Moser S 2021 ACS Catal. 11 1749Google Scholar

    [26]

    Wang L R, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2021 J. Mater. Chem. A 9 22453Google Scholar

    [27]

    Ren Z B, Zhang H N, Wang S H, Huang B B, Dai Y, Wei W 2022 J. Mater. Chem. A 10 8568Google Scholar

    [28]

    Tang M Y, Shen H M, Qie Y, Xie H H, Sun Q 2019 J. Phys. Chem. C 123 2837Google Scholar

    [29]

    Kong X P, Shi X B, Zhao W W 2023 J. Phys. Chem. C 127 5271Google Scholar

    [30]

    Zhang X M, Wang L R, Li M H, et al. 2023 Mater. Today 67 23Google Scholar

    [31]

    Loa I, Kunc K, Syassen K, Bouvier P 2002 Phys. Rev. B 66 134101Google Scholar

    [32]

    Takane D, Souma S, Nakayama K, Nakamura T, Oinuma H, Hori K, Horiba K, Kumigashira H, Kimura N, Takahashi T, Sato T 2018 Phys. Rev. B 98 041105Google Scholar

    [33]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

  • 图 1  (a) AlB2晶体结构; (b) 体相BZ和 (010)表面BZ, 绿线为不同ksy值的$ \bar{X}—\bar{\varGamma } $高对称路径

    Figure 1.  (a) AlB2 crystal structure; (b) bulk BZ and (010) surface BZ, the green line is the $ \bar{X}-\bar{\varGamma } $ high symmetry path with different ksy values.

    图 2  (a) AlB2的体相材料电子能带结构; (b) AlB2节线分布示意图, 其中K点处的红圈为贝里相位计算路径

    Figure 2.  (a) Band structure of AlB2; (b) schematic diagram of the node line distribution of AlB2, where the red circle at K point is the calculation path of Berry phase.

    图 3  AlB2 (010) 20层平板的能带结构 (a)表面BZ中ksy = 0, 0.06, 0.15和0.3时, Al端面能带结构图; (b) ksy = 0, 0.1, 0.15和0.3处B端面能带结构图, 动量位置如图1(b)所示; (c) Al端面平板模型在图3(a)中红色标记的能带$ \bar{X} $高对称点处的部分电荷密度图; (d) B端面平板模型在图3(b)中红色标记的能带$ \bar{\varGamma } $高对称点处的部分电荷密度图

    Figure 3.  Band structure of AlB2 (010) 20-layer slab: (a) Band structure of Al-terminated slab when ksy = 0, 0.06, 0.15 and 0.3 in surface BZ; (b) band structure of B-terminated slab at ksy = 0, 0.1, 0.15 and 0.3, and the position of high symmetry path, as shown in Fig. 1(b); (c) partial charge density of Al-terminated slab at the high symmetry point $ \bar{X} $ of the energy band marked in red in Fig. 3(a); (d) partial charge density diagram of B-terminated slab at the high symmetry point $ \bar{\varGamma } $ of the energy band marked in red in Fig. 3(b).

    图 4  AlB2 (010)表面吸附最佳位点图 (a) Al端面top点位吸附H; (b) Al端面top点位吸附OH; (c) Al端面top点位吸附H2O; (d) B端面top点位吸附H; (e) B端面top点位吸附OH; (f) B端面top点位吸附H2O

    Figure 4.  Optimal sites for the adsorption of AlB2 (010) surface: (a) Al-terminated slab adsorbing H on the top site; (b) Al-terminated slab adsorbing OH on the top site; (c) Al-terminated slab adsorbing H2O on the top site; (d) B-terminated slab adsorbing H on the top site; (e) B-terminated slab adsorbing OH on the top site; (f) B-terminated slab adsorbing H2O on the top site.

    图 5  AlB2 (010) 表面TSS吸附H后的变化 (a) Al端面平板单侧吸附H; (b) Al端面平板两侧吸附H; (c) B端面平板单侧吸附H; (d) B端面平板两侧吸附H; 红色标记处为两节线间的鼓膜状TSS

    Figure 5.  Changes of TSS adsorbing H of AlB2 (010) surface: (a) Al-terminated slab adsorbing H on a single side; (b) Al-terminated slab adsorbing H on both sides; (c) B-terminated slab adsorbing H on a single side; (d) B-terminated slab adsorbing H on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    图 6  AlB2 TSS吸附OH后的变化 (a) Al端面平板单侧吸附OH; (b) Al端面平板两侧吸附OH; (c) B端面单侧吸附OH; (d) B端面平板两侧吸附OH; 红色标记处为两节线间的鼓膜状TSS

    Figure 6.  Changes of TSS adsorbing OH of AlB2 (010) surface: (a) Al-terminated slab adsorbing OH on a single side; (b) Al-terminated slab adsorbing OH on both sides; (c) B-terminated slab adsorbing OH on a single side; (d) B-terminated slab adsorbing OH on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    图 7  AlB2 TSS吸附H2O后的变化 (a) Al端面平板单侧吸附H2O; (b) Al端面平板两侧吸附H2O; (c) B端面平板单侧吸附H2O; (d) B端面平板两侧吸附H2O; 红色标记处为两节线间的鼓膜状TSS

    Figure 7.  Changes of TSS adsorbing H2O of AlB2 (010) surface: (a) Al-terminated slab adsorbing H2O on a single side; (b) Al-terminated slab adsorbing H2O on both sides; (c) B-terminated slab adsorbing H2O on a single side; (d) B-terminated slab adsorbing H2O on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    表 1  AlB2 (010) 表面吸附性能参数表, 对于Bader电荷分析“+”表示电荷的增益, 而“–”表示电荷的损失(单位为$ {{\mathrm{e}}}^{-} $)

    Table 1.  Parameters of adsorption properties of AlB2 (010) surface. For the Bader charge analysis, “+” means the gain of the charge, while “–” means the loss of the charge (unit in $ {{\mathrm{e}}}^{-} $).

    材料 端面 吸附物 最佳位点 $ \Delta G/{\mathrm{eV}}$ Bader电荷分析/e
    吸附物 B Al
    AlB2 Al H top –0.031 +0.543 +0.073 –0.553
    OH top –0.253 +0.737 +0.002 –0.751
    H2O top 0.682 +0.368 +0.178 –0.556
    B H top –1.659 +0.517 –0.174 –0.019
    OH top –1.815 +0.717 –0.244 –0.008
    H2O top 0.009 +0.384 –0.127 –0.001
    DownLoad: CSV
  • [1]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [2]

    Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501Google Scholar

    [3]

    Gao H, Venderbos J W F, Kim Y, Rappe A M 2019 Annu. Rev. Mater. Res. 49 153Google Scholar

    [4]

    Yan B, Felser C 2017 Annu. Rev. Conden. Ma. P. 8 337Google Scholar

    [5]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [6]

    Fang C, Weng H M, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [7]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [8]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [9]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Conden. Ma. P. 8 289Google Scholar

    [10]

    Zhu Z M, Yu Z M, Wu W K, Zhang L F, Zhang W, Zhang F, Yang S A 2019 Phys. Rev. B 100 161401Google Scholar

    [11]

    Gao W S, Zhu M C, Chen D, Liang X, Wu Y L, Zhu A K, Han Y Y, Li L, Liu X, Zheng G L, Lu W J, Tian M L 2023 ACS Nano 17 4913Google Scholar

    [12]

    Wang L R, Yang Y, Wang J H, Liu W, Liu Y, Gong J L, Liu G D, Wang X T, Cheng Z X, Zhang X M 2022 EcoMat 5 e12316Google Scholar

    [13]

    Xie R K, Zhang T, Weng H M, Chai G L 2022 Small Sci. 2 2100106Google Scholar

    [14]

    Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H 2022 Small 18 2204380Google Scholar

    [15]

    Wang L, Zhao M, Wang J, Liu Y, Liu G, Wang X, Zhang G, Zhang X 2023 ACS Appl. Mater. Interfaces 15 51225Google Scholar

    [16]

    Chen H, Zhu W G, Xiao D, Zhang Z Y 2011 Phys. Rev. Lett. 107 056804Google Scholar

    [17]

    Li L Q, Zeng J, Qin W, Cui P, Zhang Z Y 2019 Nano Energy 58 40Google Scholar

    [18]

    Qu Q, Liu B, Liang J, Li H, Wang J N, Pan D, Sou I K 2020 ACS Catal. 10 2656Google Scholar

    [19]

    Li G W, Huang J, Yang Q, Zhang L G, Mu Q G, Sun Y, Parkin S, Chang K, Felser C 2021 J. Energy Chem. 62 516Google Scholar

    [20]

    Wei Y H, Ma D S, Yuan H K, Wang X, Kuang M Q 2023 Phys. Rev. B 107 235414Google Scholar

    [21]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Süß V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [22]

    Liu W, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2022 iScience 25 103543Google Scholar

    [23]

    Kong X P, Jiang T, Gao J J, Shi X B, Shao J, Yuan Y H, Qiu H J, Zhao W W 2021 J. Phys. Chem. Lett. 12 3740Google Scholar

    [24]

    Li J X, Ma H, Xie Q, Feng S B, Ullah S, Li R H, Dong J H, Li D Z, Li Y Y, Chen X Q 2018 Sci. China Mater. 61 23Google Scholar

    [25]

    Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D, Moser S 2021 ACS Catal. 11 1749Google Scholar

    [26]

    Wang L R, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2021 J. Mater. Chem. A 9 22453Google Scholar

    [27]

    Ren Z B, Zhang H N, Wang S H, Huang B B, Dai Y, Wei W 2022 J. Mater. Chem. A 10 8568Google Scholar

    [28]

    Tang M Y, Shen H M, Qie Y, Xie H H, Sun Q 2019 J. Phys. Chem. C 123 2837Google Scholar

    [29]

    Kong X P, Shi X B, Zhao W W 2023 J. Phys. Chem. C 127 5271Google Scholar

    [30]

    Zhang X M, Wang L R, Li M H, et al. 2023 Mater. Today 67 23Google Scholar

    [31]

    Loa I, Kunc K, Syassen K, Bouvier P 2002 Phys. Rev. B 66 134101Google Scholar

    [32]

    Takane D, Souma S, Nakayama K, Nakamura T, Oinuma H, Hori K, Horiba K, Kumigashira H, Kimura N, Takahashi T, Sato T 2018 Phys. Rev. B 98 041105Google Scholar

    [33]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

  • [1] Li Qiu-Hong, Ma Xiao-Xue, Pan Jing. Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface. Acta Physica Sinica, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] Chu Chun-Guang, Wang An-Qi, Liao Zhi-Min. Josephson effect in topological semimetal-superconductor heterojunctions. Acta Physica Sinica, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] Sun Hui-Min, He Qing-Lin. Physical problems and experimental progress in layered magnetic topological materials. Acta Physica Sinica, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [4] Qiang Xiao-Bin, Lu Hai-Zhou. Quantum transport in topological matters under magnetic fields. Acta Physica Sinica, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [5] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian. Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [6] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [7] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [8] Wei Bo-Yuan, Bu Hai-Jun, Zhang Shuai, Song Feng-Qi. Observation of planar Hall effect in topological semimetal ZrSiSe device. Acta Physica Sinica, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [9] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [10] Yi Chang-Jiang, Wang Le, Feng Zi-Li, Yang Meng, Yan Da-Yu, Wang Cui-Xiang, Shi You-Guo. Research progress of single crystal growth for topological semimetals. Acta Physica Sinica, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [11] Lu Yi-Hong, Ke Cong-Ming, Fu Ming-Ming, Wu Zhi-Ming, Kang Jun-Yong, Zhang Chun-Miao, Wu Ya-Ping. Modification of spin electronic properties of Fen/GaSe monolayer adsorption system. Acta Physica Sinica, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [12] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [13] Yin Cong, Xie Yi-Qun, Gong Xiu-Fang, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the shape of two-dimensional adatom islands on crystal surface. Acta Physica Sinica, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [14] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [15] Xu Jing. Molecular dynamics modelling of adsorption of HEDP on calcite surface. Acta Physica Sinica, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [16] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [17] Yu Yang, Xu Li-Fang, Gu Chang-Zhi. Ab initio study of the hydrogen-adsorbed diamond (001) surface. Acta Physica Sinica, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [18] Li Bo, Bao Shi-Ning, Zhuang You-Yi, Cao Pei-Lin. The adsorption geometry of ethylene on the Ni (110) surface. Acta Physica Sinica, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [19] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
  • supplement 2024-127101补充材料.pdf supplement
Metrics
  • Abstract views:  1555
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2024
  • Accepted Date:  10 April 2024
  • Available Online:  06 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回