Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tune-out wavelengths of Rydberg atoms

Liu Zhi-Hui Liu Xiao-Na He Jun Liu Yao Su Nan Cai Ting Du Yi-Jie Wang Jie-Ying Pei Dong-Liang Wang Jun-Min

Citation:

Tune-out wavelengths of Rydberg atoms

Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min
PDF
HTML
Get Citation
  • The atomic polarizability represents the response characteristics of atoms to externally applied electro-magnetic fields. The wavelength (or frequency) at which the dynamic polarizability of an atom is equal to zero is referred to as the tune-out wavelength (or frequency). Spectroscopy technology based on the tune-out effect has potential applications in quantum precision measurement, quantum computation and quantum communication. Related research topics include the measurement of fundamental physical constants and strong interactions. The tune-out wavelengths of atoms in low-lying states primarily fall within the optical band, where the theoretical calculations and experimental measurements have significant progress. However, for Rydberg atoms in highly excited states, theoretical calculations are challenging due to their high density of atomic states. The difficulty of experimental measurement arises from small splitting of adjacent atomic energy levels. In this paper, we demonstrate the tune-out wavelengths measurement for Rydberg atoms in a cesium vapor cell at room temperature. We utilize a two-photon cascade excitation to prepare Rydberg states and employ amplitude-modulation electromagnetically-induced transparency (AM-EIT) spectroscopy to measure the tune-out wavelength. By continuously scanning the microwave frequencies, we obtain AM-EIT signals of Rydberg atoms. At near-resonant microwave transition wavelengths, strong AM-EIT signals are observed due to microwave-atom coupling. Conversely, at tune-out wavelengths, the dynamically polarization-induced destructive interference in neighboring energy states occurs which leads to the weak AM-EIT signals. The AM-EIT provides a spectral resolution of about 10 MHz. We have developed a simplified three-level model to calculate the tune-out wavelength. The results of our theoretical calculations are consistent with the experimental findings within a range of ±90 MHz.
      Corresponding author: He Jun, hejun@sxu.edu.cn ; Du Yi-Jie, duyijiehandan@163.com ; Wang Jie-Ying, wjy3861@163.com
    • Funds: Project supported by the Open Fund Project of Laboratory of Science and Technology on Marine Navigation and Control, China State Shipbuilding Corporation (Grant No. 2023010201).
    [1]

    Scheffers H, Stark J 1934 Phys. Z. 35 625

    [2]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [3]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2015 Phys. Rev. A 92 052501Google Scholar

    [4]

    Arora B, Safronova M S, Clark C W 2011 Phys. Rev. A 84 043401Google Scholar

    [5]

    Schmidt F, Mayer D, Hohmann M, Lausch T, Kindermann F, Widera A 2016 Phys. Rev. A 93 022507Google Scholar

    [6]

    Jefferts S R, Heavner T P, Parker T E, Shirley J H, Donley E A, Ashby N, Levi F, Calonico D, Costanzo G A 2014 Phys. Rev. Lett. 112 050801Google Scholar

    [7]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [8]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [9]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501Google Scholar

    [10]

    Fallon A, Sackett C 2016 Atoms 4 12Google Scholar

    [11]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [12]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [13]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [14]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2017 Phys. Rev. A 95 059901Google Scholar

    [15]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [16]

    Lai Z L, Zhang S C, Gou Q D, Li Y 2018 Phys. Rev. A 98 052503Google Scholar

    [17]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502Google Scholar

    [18]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [19]

    Jiang J, Li X J, Wang X, Dong C Z, Wu Z W 2020 Phys. Rev. A 102 042823Google Scholar

    [20]

    李贤君 2020 硕士学位论文 (兰州: 西北师范大学)

    Li X J 2020 M. S. Thesis (Lanzhou: Northwest Normal University

    [21]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [22]

    Orcutt R H, Cole R H 1967 J. Chem. Phys. 46 697Google Scholar

    [23]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [24]

    Mille T M, Bederson B 1976 Phys. Rev. A 14 1572Google Scholar

    [25]

    Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1924Google Scholar

    [26]

    Cronin A D, Schemiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051Google Scholar

    [27]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J. D 38 353Google Scholar

    [28]

    Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D, Pritchard D E 1995 Phys. Rev. A 51 3883Google Scholar

    [29]

    Holmgren W F, Revelle M C, Lonij V P A, Cronin A D 2010 Phys. Rev. A 81 053607Google Scholar

    [30]

    Gregoire M D, Hromada I, Holmgren W F, Trubko R, Cronin A D 2015 Phys. Rev. A 92 052513Google Scholar

    [31]

    Amini J M, Gould H 2003 Phys. Rev. Lett. 91 153001Google Scholar

    [32]

    Ratkata A, Gregory P D, Innes A D, Matthies A J, McArd L A, Mortlock J M, Safronova M S, Bromley S L, Cornish S L 2021 Phys. Rev. A 104 052813Google Scholar

  • 图 1  (a) 魔数波长示意图; (b) tune-out波长示意图

    Figure 1.  (a) Schematic diagram of magic wavelength; (b) schematic diagram of tune-out wavelength.

    图 2  (a) 铯原子里德伯能级; (b) 基于阶梯型多能级结构理论模拟EIT光谱. 横坐标为耦合光失谐, 纵坐标为EIT透射信号强度

    Figure 2.  (a) In the first part, schematic of a three-level Rydberg atom system with a ground state $\left| {6{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $, an intermediate state $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $, and an excited state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $. A weak probe laser couples $\left| {6{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ with $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $ for Rabi frequency ${\varOmega _{\text{p}}}$ and a strong coupling laser couples $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $ with $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ for Rabi frequency ${\varOmega _{\text{c}}}$. ${\varDelta _{\text{p}}}$ and $ {\varDelta _{\text{c}}} $ are the laser detuning of the probe and coupling lasers, respectively. In part two, The four microwave transitions adjacent to Rydberg state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ are $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}$, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$, $ 65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} $, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$; (b) transmission of the probe laser as the function of the coupling laser detuning.

    图 3  铯原子基态tune-out波长理论计算结果

    Figure 3.  Theoretical calculation of ground state tune-out spectrum of cesium atoms.

    图 4  铯原子光谱实验装置图. λ/2, 半波片; PBS, 偏振分光棱镜; L, 透镜; DM1, DM4, 852 nm高反射率(HR)和509 nm高透射率(HT)双色镜; DM2, DM3, 852 nm高透射率(HT)和509 nm高反射率(HR)双色镜; PD, 光电探测器; SAS, 饱和吸收光谱; D, 激光收集器

    Figure 4.  Experimental set-up. λ/2, half-wave plate; PBS, polarizing beam splitter cube; L, lens; DM1, DM4, 852 nm high reflectivity (HR) and 509 nm high transmissivity (HT) dichroic mirror; DM2, DM3, 852 nm high transmissivity (HT) and 509 nm high reflectivity (HR) dichroic mirror; PD, photodiode; SAS, saturation absorption spectroscopy; D, optical dump.

    图 5  (a) 里德伯态$\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $对应微波共振跃迁及tune-out光谱; (b) 理论计算$65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$跃迁对应tune-out波长

    Figure 5.  (a) Microwave resonance transitions and tune-out spectrum of Rydberg state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $; (b) theoretical calculation of the tune-out wavelength between the two transitions, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}} $ and $ 65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$.

    图 6  (a) $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $里德伯态对应微波共振跃迁及tune-out光谱; (b) $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $里德伯态共振跃迁及tune-out光谱的微分信号

    Figure 6.  (a) Microwave resonance transitions and tune-out spectrum of Rydberg state $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $; (b) differential signals of Rydberg state resonance transitions and tune-out spectrum.

  • [1]

    Scheffers H, Stark J 1934 Phys. Z. 35 625

    [2]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [3]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2015 Phys. Rev. A 92 052501Google Scholar

    [4]

    Arora B, Safronova M S, Clark C W 2011 Phys. Rev. A 84 043401Google Scholar

    [5]

    Schmidt F, Mayer D, Hohmann M, Lausch T, Kindermann F, Widera A 2016 Phys. Rev. A 93 022507Google Scholar

    [6]

    Jefferts S R, Heavner T P, Parker T E, Shirley J H, Donley E A, Ashby N, Levi F, Calonico D, Costanzo G A 2014 Phys. Rev. Lett. 112 050801Google Scholar

    [7]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [8]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [9]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501Google Scholar

    [10]

    Fallon A, Sackett C 2016 Atoms 4 12Google Scholar

    [11]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [12]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [13]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [14]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2017 Phys. Rev. A 95 059901Google Scholar

    [15]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [16]

    Lai Z L, Zhang S C, Gou Q D, Li Y 2018 Phys. Rev. A 98 052503Google Scholar

    [17]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502Google Scholar

    [18]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [19]

    Jiang J, Li X J, Wang X, Dong C Z, Wu Z W 2020 Phys. Rev. A 102 042823Google Scholar

    [20]

    李贤君 2020 硕士学位论文 (兰州: 西北师范大学)

    Li X J 2020 M. S. Thesis (Lanzhou: Northwest Normal University

    [21]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [22]

    Orcutt R H, Cole R H 1967 J. Chem. Phys. 46 697Google Scholar

    [23]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [24]

    Mille T M, Bederson B 1976 Phys. Rev. A 14 1572Google Scholar

    [25]

    Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1924Google Scholar

    [26]

    Cronin A D, Schemiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051Google Scholar

    [27]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J. D 38 353Google Scholar

    [28]

    Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D, Pritchard D E 1995 Phys. Rev. A 51 3883Google Scholar

    [29]

    Holmgren W F, Revelle M C, Lonij V P A, Cronin A D 2010 Phys. Rev. A 81 053607Google Scholar

    [30]

    Gregoire M D, Hromada I, Holmgren W F, Trubko R, Cronin A D 2015 Phys. Rev. A 92 052513Google Scholar

    [31]

    Amini J M, Gould H 2003 Phys. Rev. Lett. 91 153001Google Scholar

    [32]

    Ratkata A, Gregory P D, Innes A D, Matthies A J, McArd L A, Mortlock J M, Safronova M S, Bromley S L, Cornish S L 2021 Phys. Rev. A 104 052813Google Scholar

  • [1] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [2] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields. Acta Physica Sinica, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [3] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [4] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [6] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [7] Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Physica Sinica, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [8] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [9] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [10] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [11] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [12] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [13] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [14] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [15] Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min. Investigation of experimental parameters of coherent population trapping with cesium vapor cell. Acta Physica Sinica, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [16] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [17] Wang Li-Rong, Ma Jie, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of ultracold cesium atom photoassociation spectrum using an amplitude modulation technique. Acta Physica Sinica, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [18] Zhao Jian-Ming, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Effect of external magnetic field on the coherence properties of degenerated two-level atomic system. Acta Physica Sinica, 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Zhao Jian-Ming, Zhao Yan-Ting, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of electromagnetically induced transparency with double-pumping lasers. Acta Physica Sinica, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
Metrics
  • Abstract views:  1646
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2024
  • Accepted Date:  30 April 2024
  • Available Online:  03 June 2024
  • Published Online:  05 July 2024

/

返回文章
返回