Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoinduced isomerization mechanism of isatin N2-diphenylhydrazones molecular switch

Pang Xiao-Juan Zhao Kai-Yue He Hang-Yu Zhang Ning-Bo Jiang Chen-Wei

Citation:

Photoinduced isomerization mechanism of isatin N2-diphenylhydrazones molecular switch

Pang Xiao-Juan, Zhao Kai-Yue, He Hang-Yu, Zhang Ning-Bo, Jiang Chen-Wei
PDF
HTML
Get Citation
  • Hydrazone molecular switches have significant application value in supramolecular chemistry. A new type of hydrazone molecular switch, named isatin N2-diphenylhydrazone, has been synthesized. Owing to its cis-trans isomerization characteristics under visible light excitation, ease of synthesizing of derivatives, and sensitivity to external stimuli, it has important application value in the field of biochemistry. Because of its forward and backward visible light excitation characteristics, it is considered a class of compound that is very suitable for molecular switches, and it has a wide application value in fields such as biotechnology. In addition, the derivatives compound exhibits strong interactions with negative ions, which enhances its function as a molecular switch, making it a four-state molecular switch that can be achieved by a single molecule. However, the photo-induced isomerization mechanism of these new molecular switches is not yet clear, and whether there are novel phenomena in the isomerization process is also unknown. In this work, a semi empirical OM2/MRCI based trajectory surface hopping dynamics method is adopted to systematically study a photo induced isomerization mechanism based on the E-Z isomerization process of the isatin N2-diphenylhydrazones molecular switch. Optimization configuration and the average lifetime of the first excited S1 state are obtained by using the semi-empirical OM2/MRCI method of molecular switch. It is found that the average lifetime of the S1 excited state of the E-configuration molecular switch is about 107 fs, and the quantum yield of E-Z isomerization of the molecular switch is 16.01%. By calculating the photo induced isomerization process of the molecular switch, two different isomerization mechanisms of the molecular switch are identified. In addition to the traditional molecular switch isomerization mechanism revolving around the C=N bond, a new isomerization mechanism, i.e. the face-to-face twisting of the molecular switch rotor part is elucidated. By calculating the time-resolved fluorescence radiation spectrum, it is predicted that there may be a very fast fluorescence quenching phenomenon occurring in about 75 fs in the isomerization process, slightly faster than the S1 average decay events (107 fs). The information about wavelength-resolved attenuation at different times is also calculated, which reflects the ultrafast fluorescence quenching process accompanied by fluorescence red shift, ranging from 2.1 × 104 cm–1 to 3.4 × 104 cm–1. By comparing the calculated fluorescence spectra with the average lifetime of excited states, the existence of “dark states” is proposed, and possible explanations for the existence of “dark states” are provided, and those “dark states” may be related to lower quantum yields. The research results can provide theoretical guidance for the design and application of new molecular switches. The ease of synthesis and sensitivity to external stimuli of its derivatives make those compounds extremely valuable in molecular switching and light measurement applications.
      Corresponding author: Zhao Kai-Yue, ts22180023a31@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204532, 52174137), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200648), the Key Academic Project of China University of Mining and Technology (Grant No. 2022WLXK16), the Research Start-up Funding of China University of Mining and Technology (Grant No. 102519047), and the Graduate Innovation Project of China University of Mining and Technology (Grant No. 2024WLJCRCZL284).
    [1]

    Li R J, Mou B Z, Yamada M, Li W, Nakashima T, Kawai T 2024 Molecules 29 25Google Scholar

    [2]

    Jago D, Gaschk E E, Koutsantonis G A 2023 Aust. J. Chem. 76 635Google Scholar

    [3]

    Yu Z, Hecht S 2016 Chem. Commun. 52 6639Google Scholar

    [4]

    Feringa B L, Van Delden R A, Koumura N, Geertsema E M 2000 Chem. Rev. 100 1789Google Scholar

    [5]

    Rice A M, Martin C R, Galitskiy V A, Berseneva A A, Leith G A, Shustova N B 2020 Chem. Rev. 120 8790Google Scholar

    [6]

    Zhang X Y, Hou L L, Samorì P 2016 Nat. Commun. 7 11118Google Scholar

    [7]

    Alenazi M H, Mubarak A T, Abboud M 2024 Nanotechnol. Rev. 13 20240032Google Scholar

    [8]

    Goulet-Hanssens A, Eisenreich F, Hecht S 2020 Adv. Mater. 32 1905966Google Scholar

    [9]

    Pios S V, Gelin M F, Ullah A, Dral P O, Chen L 2024 J. Phys. Chem. Lett. 15 2325Google Scholar

    [10]

    Conti I, Cerullo G, Nenov A, Garavelli M 2020 J. Am. Chem. Soc. 142 16117Google Scholar

    [11]

    Towns A 2021 Phys. Sci. Rev. 6 477Google Scholar

    [12]

    Cheng H B, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J 2022 Adv. Mater. 34 2108289Google Scholar

    [13]

    Bertarelli C, Bianco A, Castagna R, Pariani G 2011 J. Photoch. Photobio. C 12 106Google Scholar

    [14]

    Bléger D, Hecht S 2015 Angew. Chem. Int. Ed. 54 11338Google Scholar

    [15]

    Shao B, Aprahamian I 2020 Chem 6 2162Google Scholar

    [16]

    Van Dijken D J, KovaříčEk P, Ihrig S P, Hecht S 2015 J. Am. Chem. Soc. 137 14982Google Scholar

    [17]

    Schnetz M, Meier J K, Rehwald C, Mertens C, Urbschat A, Tomat E, Akam E A, Baer P, Roos F C, Brüne B 2020 Cancers 12 530Google Scholar

    [18]

    Ferreira I P, Piló E D, Recio-Despaigne A A, Da Silva J G, Ramos J P, Marques L B, Prazeres P H, Takahashi J A, Souza-Fagundes E M, Rocha W 2016 Bioorg. Med. Chem. 24 2988Google Scholar

    [19]

    Vantomme G, Lehn J M 2014 Chem. Eur. J. 20 16188Google Scholar

    [20]

    Vantomme G, Lehn J M 2013 Angew. Chem. Int. Edit. 52 3940Google Scholar

    [21]

    Vantomme G, Jiang S M, Lehn J M 2015 J. Am. Chem. Soc. 137 3138Google Scholar

    [22]

    Su X, Aprahamian I 2014 Chem. Soc. Rev. 43 1963Google Scholar

    [23]

    Chaur M N, Collado D, Lehn J M 2011 Chem. Eur. J. 17 248Google Scholar

    [24]

    Vantomme G, Jiang S, Lehn J M 2014 J. Am. Chem. Soc. 136 9509Google Scholar

    [25]

    刘同力, 黄从树, 王晶晶, 梁宇, 谢志鹏, 庄海燕, 李九龙, 朱绪飞 2024 精细化工 https://doi.org/10.13550/j.jxhg.20230989

    Liu T L, Huang C S, Wang J J, Liang Y, Xie Z P, Zhuang H Y, Li J L, Zhu X F 2024 Fine. Chem https://doi.org/ 10.13550/ j.jxhg.20230989

    [26]

    Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F 2009 J. Am. Chem. Soc. 131 15594Google Scholar

    [27]

    Beharry A A, Sadovski O, Woolley G A 2011 J. Am. Chem. Soc. 133 19684Google Scholar

    [28]

    Poloni C, Szymanski W, Hou L L, Browne W R, Feringa B L 2014 Chem. Eur. J. 20 946Google Scholar

    [29]

    Zhang Z W, Yang W X, Zhang J J 2023 Chem. Ind. Eng. Prog 42 4058 [张志伟, 杨伟鑫, 张隽佶 2023 化工进展 42 4058]Google Scholar

    Zhang Z W, Yang W X, Zhang J J 2023 Chem. Ind. Eng. Prog 42 4058Google Scholar

    [30]

    Ye H 2020 M. S. Thesie (Wuhan: Huazhong University of Science and Technology) [叶欢 2020 硕士学位论文(武汉: 华中科技大学)]

    Ye H 2020 M. S. Thesie (Wuhan: Huazhong University of Science and Technology)

    [31]

    Szymanski W, Beierle J M, Kistemaker H A, Velema W A, Feringa B L 2013 Chem. Rev. 113 6114Google Scholar

    [32]

    Cigán M, Gáplovsky M, Jakusová K, Donovalová J, Horváth M, Filo J, Gáplovsky A 2015 RSC Adv. 5 62449Google Scholar

    [33]

    Cigáň M, Jakusová K, Gáplovský M, Filo J, Donovalová J, Gáplovský A 2015 Photochem. Photobiol. Sci. 14 2064Google Scholar

    [34]

    Tisovský P, Donovalová J, Kožíšek J, Horváth M, Gáplovský A 2022 J. Photochem. Photobiol. A Chem. 427 113827Google Scholar

    [35]

    Seleem H S 2011 Chem. Cent. J. 5 8Google Scholar

    [36]

    Šandrik R, Tisovský P, Csicsai K, Donovalová J, Gáplovský M, Sokolík R, Filo J, Gáplovský A 2019 Molecules 24 2668Google Scholar

    [37]

    Liu H H, Chen Y 2009 J. Phys. Chem. A 113 5550Google Scholar

    [38]

    Tochitsky I, Polosukhina A, Degtyar V E, Gallerani N, Smith C M, Friedman A, Van Gelder R N, Trauner D, Kaufer D, Kramer R H 2014 Neuron 81 800Google Scholar

    [39]

    Van Herpt J T, Areephong J, Stuart M C, Browne W R, Feringa B L 2014 Chem. Eur. J. 20 1737Google Scholar

    [40]

    Nakagawa T, Ubukata T, Yokoyama Y 2018 J. Photochem. Photobiol. C-Photochem. Rev. 34 152Google Scholar

    [41]

    Kistemaker J C M, Stacko P, Roke D, Wolters A T, Heideman G H, Chang M C, Van Der Meulen P, Visser J, Otten E, Feringa B L 2017 J. Am. Chem. Soc. 139 9650Google Scholar

    [42]

    Kistemaker J C M, Stacko P, Visser J, Feringa B L 2015 Nature Chemistry 7 890Google Scholar

    [43]

    Thiel W 1981 J. Am. Chem. Soc. 103 1413Google Scholar

    [44]

    Wang J, Durbeej B 2018 ChemistryOpen 7 583Google Scholar

    [45]

    Ma J Z, Yang S J, Zhao D, Jiang C W, Lan Z G, Li F L 2022 Int. J. Mol. Sci. 23 3908Google Scholar

    [46]

    Pang X J, He H Y, Zhao K Y, Zhang N B, Zhong Q J 2023 Chem. Phys. Lett. 819 140439Google Scholar

    [47]

    Zhuang X H, Wang J, Lan Z G 2013 J. Phys. Chem. A 117 4785Google Scholar

    [48]

    Pang X J, Cui X Y, Hu D P, Jiang C W, Zhao D, Lan Z G, Li F L 2017 J. Phys. Chem. A 121 1240Google Scholar

    [49]

    Weber W, Thiel W 2000 Theor. Chem. Acc. 103 495Google Scholar

    [50]

    Otte N, Scholten M, Thiel W 2007 J. Phys. Chem. A 111 5751Google Scholar

    [51]

    Lan Z G, Lu Y, Weingart O, Thiel W 2012 J. Phys. Chem. A 116 1510Google Scholar

    [52]

    Jin H, Liang M, Arzhantsev S, Li X, Maroncelli M 2010 J. Phys. Chem. B 114 7565Google Scholar

  • 图 1  新型分子开关E-Z异构机制图, 最优基态反应物 (a) E及产物(b) Z的S0最优构型图, 所有相关原子序号均已标注

    Figure 1.  E-Z isomerization mechanism diagram of a novel molecular switch, the optimal configuration diagram of S0 for the optimal ground state reactant (a) E and product (b) Z, with all relevant atomic numbers marked.

    图 2  新型分子开关半经验 OM2/MRCI方法下优化的第一激发态S1最优构型

    Figure 2.  Optimization of the optimal configuration of the first excited state S1 under the semi-empirical OM2/MRCI method of the novel molecular switch.

    图 3  电子在基态S0和第一激发态S1的态平均占据数随时间变化情况

    Figure 3.  The average occupancy of electrons in the ground state S0 and the first excited state S1 over time.

    图 4  新型分子开关异构化过程中的键长的变化趋势图 (a), (b)扭转过程中C8—N17 与C2—C8, N17—N16的变化趋势; (c), (d)旋转过程中C8—N17 与C2—C8, N17—N16变化趋势

    Figure 4.  Trend chart of bond length changes during the isomerization process of the novel molecular switch: (a), (b) The changing trends of C8—N17 and C2—C8, N17—N16 during the twisting process; (c), (d) changes in C8—N17 and C2—C8, N17—N16 during rotation.

    图 5  新型分子开关异构化过程中的二面角的变化趋势 (a), (b)扭转过程中C2—C8—N17—N16, C7—C8—N17—N16与C8—N17—N16—C33, C8—N17—N16—C18的变化趋势; (c), (d)旋转过程中C2—C8—N17—N16, C7—C8—N17—N16与C8—N17—N16—C33, C8—N17—N16—C18的变化趋势

    Figure 5.  The changing trend of dihedral angle during the isomerization process of the novel molecular switch: (a), (b) The changing trends of C2—C8—N17—N16, C7—C8—N17—N16, C8—N17—N16—C33, and C8—N17—N16—C18 during the twisting process; (c), (d) the changing trends of C2—C8—N17—N16, C7—C8—N17—N16, C8—N17—N16—C33, and C8—N17—N16—C18 during the rotation process.

    图 6  激发态动力学的含时荧光辐射光谱 (a)随时间变化荧光辐射光谱; (b)不同时间下随波长变化的衰减信息

    Figure 6.  Time-dependent fluorescence emission spectra of excited state dynamics: (a) The time-resolved deconvoluted emission spectrum; (b) the wavelength-resolved decay information in different time.

  • [1]

    Li R J, Mou B Z, Yamada M, Li W, Nakashima T, Kawai T 2024 Molecules 29 25Google Scholar

    [2]

    Jago D, Gaschk E E, Koutsantonis G A 2023 Aust. J. Chem. 76 635Google Scholar

    [3]

    Yu Z, Hecht S 2016 Chem. Commun. 52 6639Google Scholar

    [4]

    Feringa B L, Van Delden R A, Koumura N, Geertsema E M 2000 Chem. Rev. 100 1789Google Scholar

    [5]

    Rice A M, Martin C R, Galitskiy V A, Berseneva A A, Leith G A, Shustova N B 2020 Chem. Rev. 120 8790Google Scholar

    [6]

    Zhang X Y, Hou L L, Samorì P 2016 Nat. Commun. 7 11118Google Scholar

    [7]

    Alenazi M H, Mubarak A T, Abboud M 2024 Nanotechnol. Rev. 13 20240032Google Scholar

    [8]

    Goulet-Hanssens A, Eisenreich F, Hecht S 2020 Adv. Mater. 32 1905966Google Scholar

    [9]

    Pios S V, Gelin M F, Ullah A, Dral P O, Chen L 2024 J. Phys. Chem. Lett. 15 2325Google Scholar

    [10]

    Conti I, Cerullo G, Nenov A, Garavelli M 2020 J. Am. Chem. Soc. 142 16117Google Scholar

    [11]

    Towns A 2021 Phys. Sci. Rev. 6 477Google Scholar

    [12]

    Cheng H B, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J 2022 Adv. Mater. 34 2108289Google Scholar

    [13]

    Bertarelli C, Bianco A, Castagna R, Pariani G 2011 J. Photoch. Photobio. C 12 106Google Scholar

    [14]

    Bléger D, Hecht S 2015 Angew. Chem. Int. Ed. 54 11338Google Scholar

    [15]

    Shao B, Aprahamian I 2020 Chem 6 2162Google Scholar

    [16]

    Van Dijken D J, KovaříčEk P, Ihrig S P, Hecht S 2015 J. Am. Chem. Soc. 137 14982Google Scholar

    [17]

    Schnetz M, Meier J K, Rehwald C, Mertens C, Urbschat A, Tomat E, Akam E A, Baer P, Roos F C, Brüne B 2020 Cancers 12 530Google Scholar

    [18]

    Ferreira I P, Piló E D, Recio-Despaigne A A, Da Silva J G, Ramos J P, Marques L B, Prazeres P H, Takahashi J A, Souza-Fagundes E M, Rocha W 2016 Bioorg. Med. Chem. 24 2988Google Scholar

    [19]

    Vantomme G, Lehn J M 2014 Chem. Eur. J. 20 16188Google Scholar

    [20]

    Vantomme G, Lehn J M 2013 Angew. Chem. Int. Edit. 52 3940Google Scholar

    [21]

    Vantomme G, Jiang S M, Lehn J M 2015 J. Am. Chem. Soc. 137 3138Google Scholar

    [22]

    Su X, Aprahamian I 2014 Chem. Soc. Rev. 43 1963Google Scholar

    [23]

    Chaur M N, Collado D, Lehn J M 2011 Chem. Eur. J. 17 248Google Scholar

    [24]

    Vantomme G, Jiang S, Lehn J M 2014 J. Am. Chem. Soc. 136 9509Google Scholar

    [25]

    刘同力, 黄从树, 王晶晶, 梁宇, 谢志鹏, 庄海燕, 李九龙, 朱绪飞 2024 精细化工 https://doi.org/10.13550/j.jxhg.20230989

    Liu T L, Huang C S, Wang J J, Liang Y, Xie Z P, Zhuang H Y, Li J L, Zhu X F 2024 Fine. Chem https://doi.org/ 10.13550/ j.jxhg.20230989

    [26]

    Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F 2009 J. Am. Chem. Soc. 131 15594Google Scholar

    [27]

    Beharry A A, Sadovski O, Woolley G A 2011 J. Am. Chem. Soc. 133 19684Google Scholar

    [28]

    Poloni C, Szymanski W, Hou L L, Browne W R, Feringa B L 2014 Chem. Eur. J. 20 946Google Scholar

    [29]

    Zhang Z W, Yang W X, Zhang J J 2023 Chem. Ind. Eng. Prog 42 4058 [张志伟, 杨伟鑫, 张隽佶 2023 化工进展 42 4058]Google Scholar

    Zhang Z W, Yang W X, Zhang J J 2023 Chem. Ind. Eng. Prog 42 4058Google Scholar

    [30]

    Ye H 2020 M. S. Thesie (Wuhan: Huazhong University of Science and Technology) [叶欢 2020 硕士学位论文(武汉: 华中科技大学)]

    Ye H 2020 M. S. Thesie (Wuhan: Huazhong University of Science and Technology)

    [31]

    Szymanski W, Beierle J M, Kistemaker H A, Velema W A, Feringa B L 2013 Chem. Rev. 113 6114Google Scholar

    [32]

    Cigán M, Gáplovsky M, Jakusová K, Donovalová J, Horváth M, Filo J, Gáplovsky A 2015 RSC Adv. 5 62449Google Scholar

    [33]

    Cigáň M, Jakusová K, Gáplovský M, Filo J, Donovalová J, Gáplovský A 2015 Photochem. Photobiol. Sci. 14 2064Google Scholar

    [34]

    Tisovský P, Donovalová J, Kožíšek J, Horváth M, Gáplovský A 2022 J. Photochem. Photobiol. A Chem. 427 113827Google Scholar

    [35]

    Seleem H S 2011 Chem. Cent. J. 5 8Google Scholar

    [36]

    Šandrik R, Tisovský P, Csicsai K, Donovalová J, Gáplovský M, Sokolík R, Filo J, Gáplovský A 2019 Molecules 24 2668Google Scholar

    [37]

    Liu H H, Chen Y 2009 J. Phys. Chem. A 113 5550Google Scholar

    [38]

    Tochitsky I, Polosukhina A, Degtyar V E, Gallerani N, Smith C M, Friedman A, Van Gelder R N, Trauner D, Kaufer D, Kramer R H 2014 Neuron 81 800Google Scholar

    [39]

    Van Herpt J T, Areephong J, Stuart M C, Browne W R, Feringa B L 2014 Chem. Eur. J. 20 1737Google Scholar

    [40]

    Nakagawa T, Ubukata T, Yokoyama Y 2018 J. Photochem. Photobiol. C-Photochem. Rev. 34 152Google Scholar

    [41]

    Kistemaker J C M, Stacko P, Roke D, Wolters A T, Heideman G H, Chang M C, Van Der Meulen P, Visser J, Otten E, Feringa B L 2017 J. Am. Chem. Soc. 139 9650Google Scholar

    [42]

    Kistemaker J C M, Stacko P, Visser J, Feringa B L 2015 Nature Chemistry 7 890Google Scholar

    [43]

    Thiel W 1981 J. Am. Chem. Soc. 103 1413Google Scholar

    [44]

    Wang J, Durbeej B 2018 ChemistryOpen 7 583Google Scholar

    [45]

    Ma J Z, Yang S J, Zhao D, Jiang C W, Lan Z G, Li F L 2022 Int. J. Mol. Sci. 23 3908Google Scholar

    [46]

    Pang X J, He H Y, Zhao K Y, Zhang N B, Zhong Q J 2023 Chem. Phys. Lett. 819 140439Google Scholar

    [47]

    Zhuang X H, Wang J, Lan Z G 2013 J. Phys. Chem. A 117 4785Google Scholar

    [48]

    Pang X J, Cui X Y, Hu D P, Jiang C W, Zhao D, Lan Z G, Li F L 2017 J. Phys. Chem. A 121 1240Google Scholar

    [49]

    Weber W, Thiel W 2000 Theor. Chem. Acc. 103 495Google Scholar

    [50]

    Otte N, Scholten M, Thiel W 2007 J. Phys. Chem. A 111 5751Google Scholar

    [51]

    Lan Z G, Lu Y, Weingart O, Thiel W 2012 J. Phys. Chem. A 116 1510Google Scholar

    [52]

    Jin H, Liang M, Arzhantsev S, Li X, Maroncelli M 2010 J. Phys. Chem. B 114 7565Google Scholar

  • [1] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [4] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [5] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [6] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [7] Zhang Shu-Dong, Wang Chuan-Hang, Tang Wei, Sun Yang, Sun Ning-Ze, Sun Zhao-Yu, Xu Hui. Mechanism of 2, 3-difurylmaleic anhydride photochromic molecular switch. Acta Physica Sinica, 2021, 70(16): 163101. doi: 10.7498/aps.70.20202039
    [8] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [9] Li Xiao-Ke, Feng Wei. Quantum trajectory simulation for nonadiabatic molecular dynamics. Acta Physica Sinica, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [10] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [11] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [12] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [13] Xu Guo-Liang, Xia Yao-Zheng, Liu Xue-Feng, Zhang Xian-Zhou, Liu Yu-Fang. Effect of external electric field excitation on titanium monoxide. Acta Physica Sinica, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [14] Xu Guo-Liang, Lü Wen-Jing, Liu Yu-Fang, Zhu Zun-Lüe, Zhang Xian-Zhou, Sun Jin-Feng. Effect of external electric field on the optical excitation of silicon dioxide. Acta Physica Sinica, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [15] Lü Bing, Zhou Xun, Linghu Rong-Feng, Yang Xiang-Dong, Zhu Zheng-He. Analytical potential energy function for the electronic states X2Σ+,A2Π and B2Σ+ of MgH molecule. Acta Physica Sinica, 2008, 57(2): 816-821. doi: 10.7498/aps.57.816
    [16] Zhao Peng, Fang Chang-Feng, Xia Cai-Juan, Wang Yi-Ming, Gao Kun, Liu De-Sheng, Xie Shi-Jie. F-substituent on the photoswitchable performance of diarylethenes. Acta Physica Sinica, 2008, 57(6): 3747-3752. doi: 10.7498/aps.57.3747
    [17] Xu Guo-Liang, Xiao Xiao-Hong, Geng Zhen-Duo, Liu Yu-Fang, Zhu Zheng-He. Effect of external electric field excitation on methyl vinyl siloxane. Acta Physica Sinica, 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [18] Deng Luo-Gen, Luo Li-Yuan. Enhancement factor formulation of doped nematic liquid crystals in the presence of photoisomerization. Acta Physica Sinica, 2007, 56(3): 1480-1488. doi: 10.7498/aps.56.1480
    [19] Xu Guo-Liang, Zhu Zheng-He, Ma Mei-Zhong, Xie An-Dong. Study on the effect of external electric field excitation on methane. Acta Physica Sinica, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
    [20] LIANG ZHONG-CHENG, MING HAI, WANG PEI, ZHANG JIANG-YING, LONG YUN-ZE, XIA YONG, XIE JIAN-PING, ZHANG QI-JIN. NONLINEARLY OPTICAL-INDUCED BIREFRINGENCE IN AZO LIQUID CRYSTAL POLYMERS. Acta Physica Sinica, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
Metrics
  • Abstract views:  1909
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2024
  • Accepted Date:  29 July 2024
  • Available Online:  31 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回