-
In this work, the molecular structure and energy of some critical points in nonradiative relaxation process of the excited state of pentafluoropyridine are studied through quantum chemistry calculation. The structures and the vertical excitation energies and adiabatic excitation energies of the ground state and two lowest exited states are calculated. The geometry of the ground state is a planar structure with C2v symmetry, while the geometries of the two lowest excited states are half-boat structures with out-of-plane distortions. Furthermore, the topology structures and energy of the conical intersections of S2/S1, S1/S0 and S2/S0 are determined. The topology structures of the conical intersections S2/S1, S1/S0 and S2/S0 in the branching space are all peaked with asymmetric structures, and are determined to be structure of boat, half-boat, and chair, respectively. Their corresponding energy values are estimated at 6.39, 5.16 and 8.51 eV, respectively. The results show that the primary non-adiabatic relaxation pathway is the wavepacket of the S2 state rapidly evolving into the S1 state via the S2/S1, and then directly relaxing to the ground state via the S1/S0. In addition, the probability of directly relaxing to the ground state through S2/S0 is smaller.
-
Keywords:
- quantum chemical calculations /
- conical intersection /
- excited states /
- structure evolution
[1] Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar
[2] Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar
[3] Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar
[4] Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar
[5] Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar
[6] Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar
[7] Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar
[8] Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar
[9] Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar
[10] Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar
[11] De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar
[12] Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar
[13] Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar
[14] Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar
[15] Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar
[16] Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar
[17] Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar
[18] Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar
[19] Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar
[20] Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar
[21] Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar
[22] Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar
[23] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT
[24] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO
[25] Neese F 2022 Wires Comput. 12 1606Google Scholar
[26] Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6
[27] Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[28] Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar
[29] Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar
[30] Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar
[31] Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar
[32] Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar
[33] Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar
[34] Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar
[35] Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar
[36] Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar
[37] Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar
[38] Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar
[39] Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar
[40] Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar
[41] Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar
[42] Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar
[43] Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar
-
表 1 利用B3LYP, M062X, SA-CASSCF(8, 8)方法, 得到五氟吡啶分子的S1态和S2态的结构参数(键长单位Å, 二面角单位(°))
Table 1. Structural parameters of the S1 and S2 states were obtained by B3LYP, M062X and SA-CASSCF(8, 8) methods, respectively (Bond length and dihedral angle are Å, (°) in units, respectively).
结构参数 S1 S2 B3LYP/
6-311G*M062X/
6-311G*SA-CASSCF/
6-311G*B3LYP/
6-311G*M062X/
6-311G*SA-CASSCF/
6-311G*C1—F1 1.32 1.31 1.31 1.34 1.31 1.29 C2—F2 1.34 1.33 1.33 1.34 1.33 1.33 C3—F3 1.41 1.37 1.37 1.39 1.37 1.29 C4—F4 1.34 1.33 1.33 1.34 1.33 1.32 C5—F5 1.32 1.31 1.31 1.34 1.31 1.30 C1—N 1.32 1.32 1.32 1.33 1.32 1.44 C5—N 1.32 1.32 1.32 1.33 1.32 1.36 C1—C2 1.43 1.43 1.43 1.38 1.43 1.35 C2—C3 1.40 1.40 1.40 1.44 1.40 1.43 C3—C4 1.40 1.40 1.40 1.44 1.40 1.47 C4—C5 1.43 1.43 1.43 1.38 1.43 1.34 C1—C5 2.20 2.18 2.21 2.29 2.18 2.36 C2—C4 2.28 2.28 2.36 2.45 2.28 2.52 N—C1—C2—C5 3.83 5.31 1.13 3.07 5.42 20.69 C3—C2—C1—C4 13.26 13.33 0.30 16.25 13.16 20.64 F3—C3—C4—C1 54.38 52.09 45.11 75.49 51.89 55.04 F4—C4—C5—C1 13.68 14.05 3.13 12.19 14.58 32.02 F5—C5—C4—C2 6.96 9.10 2.96 7.32 9.66 18.20 表 2 B3LYP, SA-CASSCF(8, 8), M062X和CASPT2方法结合6-311G*基组计算得到五氟吡啶分子S1态和S2态的VEEs和AEEs (单位为eV)
Table 2. VEEs and AEEs (in eV) of pentafluoropyridine in the S1 and S2 states calculated at B3LYP, SA-CASSCF(8, 8), M062X and CASPT2 levels with the 6-311G* basis set.
Methods S1 S2 VEEs Dev/% AEEs Dev/% VEEs AEEs Exp.a) 4.88 — 4.60 — — — RI-SCS-CC2a) 5.10 4.5 4.60 0 6.35 — XMCQDPT2a) 4.89 0.2 4.41 4.1 6.23 5.26 B3LYP 5.33 9.2 4.41 4.1 6.28 5.26 SA-CASSCF(8, 8) 5.47 12.1 4.84 5.2 6.92 6.69 M062X 5.63 9.8 4.80 4.3 6.50 6.15b) CASPT2 5.02 2.9 4.41 4.1 6.33 — 注: a) 来自参考文献[22]; b) 基于M062X/6-31G*的结果 表 3 SA-CASSCF水平下的锥形交叉的结构参数(键长单位Å, 二面角单位 (°))
Table 3. Structural parameters of conical intersections were obtained by SA-CASSCF(8, 8) methods (Bond length and dihedral angle are Å, (°) in units).
参数 S2/S1 S1/S0 S2/S0 C1—F1 1.30 1.30 1.31 C2—F2 1.32 1.31 1.30 C3—F3 1.30 1.32 1.32 C4—F4 1.32 1.31 1.30 C5—F5 1.30 1.30 1.31 C1—N 1.45 1.31 1.48 C5—N 1.29 1.33 1.42 C1—C2 1.47 1.46 1.49 C2—C3 1.39 1.46 1.48 C3—C4 1.49 1.47 1.47 C4—C5 1.45 1.45 1.49 N—C1—C2—C5 29.72 2.15 22.59 C3—C2—C1—C4 10.90 46.24 12.28 F3—C3—C4—C1 11.57 36.30 64.87 F4—C4—C5—C1 9.84 30.71 0.81 表 4 锥形交叉在分支空间中的拓扑参数
Table 4. Topological parameters of conical intersections in branching space.
参数 S1/S0 S2/S1 S2/S0 σx/(eV·Å–1) –0.0047 0.1413 0.4016 σy/(eV·Å–1) –0.0207 0.0757 –0.0001 ${\varDelta }_{\mathrm{gh}} $ –0.9904 –0.9796 –0.8647 dgh 1.5000 1.0212 0.6159 -
[1] Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar
[2] Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar
[3] Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar
[4] Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar
[5] Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar
[6] Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar
[7] Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar
[8] Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar
[9] Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar
[10] Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar
[11] De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar
[12] Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar
[13] Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar
[14] Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar
[15] Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar
[16] Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar
[17] Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar
[18] Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar
[19] Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar
[20] Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar
[21] Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar
[22] Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar
[23] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT
[24] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO
[25] Neese F 2022 Wires Comput. 12 1606Google Scholar
[26] Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6
[27] Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[28] Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar
[29] Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar
[30] Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar
[31] Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar
[32] Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar
[33] Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar
[34] Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar
[35] Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar
[36] Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar
[37] Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar
[38] Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar
[39] Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar
[40] Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar
[41] Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar
[42] Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar
[43] Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar
Catalog
Metrics
- Abstract views: 1695
- PDF Downloads: 44
- Cited By: 0