Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine

Li Duo-Duo Zhang Song

Citation:

Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine

Li Duo-Duo, Zhang Song
PDF
HTML
Get Citation
  • In this work, the molecular structure and energy of some critical points in nonradiative relaxation process of the excited state of pentafluoropyridine are studied through quantum chemistry calculation. The structures and the vertical excitation energies and adiabatic excitation energies of the ground state and two lowest exited states are calculated. The geometry of the ground state is a planar structure with C2v symmetry, while the geometries of the two lowest excited states are half-boat structures with out-of-plane distortions. Furthermore, the topology structures and energy of the conical intersections of S2/S1, S1/S0 and S2/S0 are determined. The topology structures of the conical intersections S2/S1, S1/S0 and S2/S0 in the branching space are all peaked with asymmetric structures, and are determined to be structure of boat, half-boat, and chair, respectively. Their corresponding energy values are estimated at 6.39, 5.16 and 8.51 eV, respectively. The results show that the primary non-adiabatic relaxation pathway is the wavepacket of the S2 state rapidly evolving into the S1 state via the S2/S1, and then directly relaxing to the ground state via the S1/S0. In addition, the probability of directly relaxing to the ground state through S2/S0 is smaller.
      Corresponding author: Zhang Song, zhangsong@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 12274418, 22273116, 11974381, 12074389, 21873114), and the Knowledge Innovation Program of Wuhan-Basic Research, China (Grant No. 2022010801010134).
    [1]

    Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar

    [2]

    Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar

    [3]

    Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar

    [4]

    Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar

    [5]

    Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar

    [6]

    Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar

    [7]

    Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar

    [8]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar

    [9]

    Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar

    [10]

    Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar

    [11]

    De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar

    [12]

    Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar

    [13]

    Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar

    [14]

    Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar

    [15]

    Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar

    [16]

    Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar

    [17]

    Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar

    [18]

    Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar

    [19]

    Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar

    [20]

    Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar

    [21]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar

    [22]

    Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT

    [24]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO

    [25]

    Neese F 2022 Wires Comput. 12 1606Google Scholar

    [26]

    Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6

    [27]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [28]

    Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar

    [29]

    Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar

    [30]

    Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar

    [31]

    Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar

    [32]

    Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar

    [33]

    Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar

    [34]

    Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar

    [35]

    Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar

    [36]

    Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar

    [37]

    Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar

    [38]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [39]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [40]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [41]

    Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar

    [42]

    Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar

    [43]

    Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar

  • 图 1  (a)五氟吡啶分子的结构和对应的原子序数; (b)—(d) 利用B3LYP, M062X和SA-CASSCF(8, 8)方法下获得的S0态的几何结构

    Figure 1.  (a) Molecular structures and corresponding atomic numbers of pentafluoropyridine; (b)–(d) geometric structure of the S0 state was calculated under B3LYP, M062X and SA-CASSCF(8, 8) methods.

    图 2  利用B3LYP, M062X和SA-CASSCF(8, 8)方法优化得到S1态(上图)和S2(下图)的几何结构

    Figure 2.  Geometric structures of the S1 (upper) and S2 (lower) states were calculated under B3LYP, M062X and SA-CASSCF(8, 8) methods.

    图 3  利用B3LYP和M062X方法计算得到的五氟吡啶分子吸收光谱

    Figure 3.  Absorption spectra of pentafluoropyridine by B3LYP and M062X levels.

    图 4  SA-CASSCF水平下的锥形交叉的结构 (a) S2/S1; (b) S1/S0; (c) S2/S0

    Figure 4.  Structures of conical intersections under the SA-CASSCF level: (a) S2/S1; (b) S1/S0; (c) S2/S0.

    图 5  分支空间中锥形交叉的拓扑结构 (a) S2/S1; (b) S1/S0; (c) S2/S0. 能量单位: eV; xy单位: Å

    Figure 5.  Topological structure of conical crossover in bifurcation space: (a) S2/S1; (b) S1/S0; (c) S2/S0 in the branching space. Energy in eV; x and y in Å.

    图 6  五氟吡啶分子的非辐射弛豫动力学

    Figure 6.  Nonradiative relaxation dynamics of pentafluoropyridine.

    表 1  利用B3LYP, M062X, SA-CASSCF(8, 8)方法, 得到五氟吡啶分子的S1态和S2态的结构参数(键长单位Å, 二面角单位(°))

    Table 1.  Structural parameters of the S1 and S2 states were obtained by B3LYP, M062X and SA-CASSCF(8, 8) methods, respectively (Bond length and dihedral angle are Å, (°) in units, respectively).

    结构参数
    S1 S2
    B3LYP/
    6-311G*
    M062X/
    6-311G*
    SA-CASSCF/
    6-311G*
    B3LYP/
    6-311G*
    M062X/
    6-311G*
    SA-CASSCF/
    6-311G*
    C1—F1 1.32 1.31 1.31 1.34 1.31 1.29
    C2—F2 1.34 1.33 1.33 1.34 1.33 1.33
    C3—F3 1.41 1.37 1.37 1.39 1.37 1.29
    C4—F4 1.34 1.33 1.33 1.34 1.33 1.32
    C5—F5 1.32 1.31 1.31 1.34 1.31 1.30
    C1—N 1.32 1.32 1.32 1.33 1.32 1.44
    C5—N 1.32 1.32 1.32 1.33 1.32 1.36
    C1—C2 1.43 1.43 1.43 1.38 1.43 1.35
    C2—C3 1.40 1.40 1.40 1.44 1.40 1.43
    C3—C4 1.40 1.40 1.40 1.44 1.40 1.47
    C4—C5 1.43 1.43 1.43 1.38 1.43 1.34
    C1—C5 2.20 2.18 2.21 2.29 2.18 2.36
    C2—C4 2.28 2.28 2.36 2.45 2.28 2.52
    N—C1—C2—C5 3.83 5.31 1.13 3.07 5.42 20.69
    C3—C2—C1—C4 13.26 13.33 0.30 16.25 13.16 20.64
    F3—C3—C4—C1 54.38 52.09 45.11 75.49 51.89 55.04
    F4—C4—C5—C1 13.68 14.05 3.13 12.19 14.58 32.02
    F5—C5—C4—C2 6.96 9.10 2.96 7.32 9.66 18.20
    DownLoad: CSV

    表 2  B3LYP, SA-CASSCF(8, 8), M062X和CASPT2方法结合6-311G*基组计算得到五氟吡啶分子S1态和S2态的VEEs和AEEs (单位为eV)

    Table 2.  VEEs and AEEs (in eV) of pentafluoropyridine in the S1 and S2 states calculated at B3LYP, SA-CASSCF(8, 8), M062X and CASPT2 levels with the 6-311G* basis set.

    Methods S1 S2
    VEEs Dev/% AEEs Dev/% VEEs AEEs
    Exp.a) 4.88 4.60
    RI-SCS-CC2a) 5.10 4.5 4.60 0 6.35
    XMCQDPT2a) 4.89 0.2 4.41 4.1 6.23 5.26
    B3LYP 5.33 9.2 4.41 4.1 6.28 5.26
    SA-CASSCF(8, 8) 5.47 12.1 4.84 5.2 6.92 6.69
    M062X 5.63 9.8 4.80 4.3 6.50 6.15b)
    CASPT2 5.02 2.9 4.41 4.1 6.33
    注: a) 来自参考文献[22]; b) 基于M062X/6-31G*的结果
    DownLoad: CSV

    表 3  SA-CASSCF水平下的锥形交叉的结构参数(键长单位Å, 二面角单位 (°))

    Table 3.  Structural parameters of conical intersections were obtained by SA-CASSCF(8, 8) methods (Bond length and dihedral angle are Å, (°) in units).

    参数 S2/S1 S1/S0 S2/S0
    C1—F1 1.30 1.30 1.31
    C2—F2 1.32 1.31 1.30
    C3—F3 1.30 1.32 1.32
    C4—F4 1.32 1.31 1.30
    C5—F5 1.30 1.30 1.31
    C1—N 1.45 1.31 1.48
    C5—N 1.29 1.33 1.42
    C1—C2 1.47 1.46 1.49
    C2—C3 1.39 1.46 1.48
    C3—C4 1.49 1.47 1.47
    C4—C5 1.45 1.45 1.49
    N—C1—C2—C5 29.72 2.15 22.59
    C3—C2—C1—C4 10.90 46.24 12.28
    F3—C3—C4—C1 11.57 36.30 64.87
    F4—C4—C5—C1 9.84 30.71 0.81
    DownLoad: CSV

    表 4  锥形交叉在分支空间中的拓扑参数

    Table 4.  Topological parameters of conical intersections in branching space.

    参数 S1/S0 S2/S1 S2/S0
    σx/(eV·Å–1) –0.0047 0.1413 0.4016
    σy/(eV·Å–1) –0.0207 0.0757 –0.0001
    ${\varDelta }_{\mathrm{gh}} $ –0.9904 –0.9796 –0.8647
    dgh 1.5000 1.0212 0.6159
    DownLoad: CSV
  • [1]

    Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar

    [2]

    Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar

    [3]

    Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar

    [4]

    Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar

    [5]

    Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar

    [6]

    Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar

    [7]

    Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar

    [8]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar

    [9]

    Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar

    [10]

    Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar

    [11]

    De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar

    [12]

    Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar

    [13]

    Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar

    [14]

    Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar

    [15]

    Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar

    [16]

    Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar

    [17]

    Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar

    [18]

    Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar

    [19]

    Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar

    [20]

    Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar

    [21]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar

    [22]

    Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT

    [24]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO

    [25]

    Neese F 2022 Wires Comput. 12 1606Google Scholar

    [26]

    Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6

    [27]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [28]

    Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar

    [29]

    Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar

    [30]

    Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar

    [31]

    Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar

    [32]

    Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar

    [33]

    Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar

    [34]

    Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar

    [35]

    Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar

    [36]

    Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar

    [37]

    Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar

    [38]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [39]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [40]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [41]

    Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar

    [42]

    Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar

    [43]

    Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar

  • [1] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [4] Xu You-Jie, Guo Ying-Chun, Wang Bing-Bing. Quantum chemical calculation of normal vibration frequencies of polyatomic molecules. Acta Physica Sinica, 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [5] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [7] Zhang Shu-Dong, Wang Chuan-Hang, Tang Wei, Sun Yang, Sun Ning-Ze, Sun Zhao-Yu, Xu Hui. Ab initio calculation of electronic state structure of TiAl. Acta Physica Sinica, 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [8] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [9] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [10] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [11] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [12] Zhang Zhao-Hui, Li Hai-Peng, Mao Shi-Chun. Effect of the structure and the arrangement of organic molecules on the atomic charge and electrostatic interaction. Acta Physica Sinica, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [13] Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun. Investigation of photoionization of excited atom irradiated by the high-frequency intense laser. Acta Physica Sinica, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [14] Xu Bo, Wang Shu-Lin, Li Lai-Qiang, Li Sheng-Juan. Structure evolvement of solid particles and mechano-chemical effect. Acta Physica Sinica, 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [15] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [16] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [17] Cai Shao-Hong, Zhou Ye-Hong. The excited states structure for chloroethylene under the external electric field. Acta Physica Sinica, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] Gu Bin, Jin Nian-Qing, Wang Zhi-Ping, Zeng Xiang-Hua. Calculation of the transition spectra of sodium atom via TDDFT. Acta Physica Sinica, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [19] Hao Wan-Jun, Li Chang, Wei Ying-Jin, Chen Gang, Xu Wu. Transformation of electronic state of Co3+ and its influence on the structural development in Li(AlxCo1-x)O2. Acta Physica Sinica, 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [20] Zhao Xiao-Peng, Gao Xiu-Min, Gao Dan-Jun, Zhong Hong-Fei. . Acta Physica Sinica, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
Metrics
  • Abstract views:  2013
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2023
  • Accepted Date:  03 November 2023
  • Available Online:  18 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回