Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excited state characteristics of polymer donor and non-fullerene acceptor molecules

XU Lingxia LIANG Yongqi

Citation:

Excited state characteristics of polymer donor and non-fullerene acceptor molecules

XU Lingxia, LIANG Yongqi
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The high exciton binding energy of organic semiconductor materials limits charge separation efficiency. Investigating the excited state characteristics and modulation mechanisms of polymer donor and non-fullerene acceptor molecules is crucial for optimizing material design and enhancing the performance of organic photovoltaic devices. Therefore, this study investigates the excited state characteristics in polymer and non-fullerene organic materials. The tight-binding quantum mechanical method is used to systematically compare the excited state characteristics (including lattice geometry, band structure, and binding energy) between polymer donor and non-fullerene acceptor molecules, with particular emphasis on the role of electron-phonon coupling in modulating these excited state characteristics. The results indicate that non-fullerene acceptor molecules exhibit smaller lattice distortion, narrower bandgap, and lower binding energy than polymer donor molecules. It is precisely due to the different excited state characteristics of the polymer donor and non-fullerene acceptor molecules that the exciton binding energy in the organic photovoltaic system they constitute can be effectively reduced, while also providing a favorable energy-level shift for exciton dissociation. This significantly enhances the efficiency of charge transfer and separation. Furthermore, the decrease of electron-lattice coupling strength can further reduce these parameters in both polymer donor and non-fullerene acceptor molecules. By enhancing the electron-donating capability of central groups or the electron-withdrawing capacity of end groups in non-fullerene acceptor molecules, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels can be shifted upward or downward. The upshifted HOMO and LUMO energy levels are accompanied by an increase in molecular polarizability and a decrease in reorganization energy, while the downshifted HOMO and LUMO energy levels lead to an enhanced molecular dipole moment and improved electron affinity. This optimized energy-level structure further reduces the binding energy and achieves efficient charge separation. These findings demonstrate that the efficient charge transfer and separation in polymer/non-fullerene organic photovoltaic systems originate from their distinct molecular excited state characteristics. This basic understanding enables the rational design of high-performance organic optoelectronic materials and the development of novel organic photovoltaic devices by strategically adjusting the electron-phonon coupling strength and push-pull electronic structures of non-fullerene acceptors.
  • 图 1  (a) 聚合物(P3HT)和非富勒烯(Y6)的化学式; (b) 聚合物和非富勒烯简化的分子模型

    Figure 1.  (a) Chemical structures of the polymer donor (P3HT) and the non-fullerene acceptor (Y6); (b) simplified molecular models of the polymer donor and the non-fullerene acceptor.

    图 2  不同电子-晶格相互作用常数时, 聚合物和非富勒烯分子激发态的晶格位形 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Figure 2.  Lattice configurations of excited states in the polymer and non-fullerene molecule for different electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 3  聚合物和非富勒烯分子激发态的带隙(Eg)随电子-晶格常数(α)的变化

    Figure 3.  The bandgap (Eg) of excited states in the polymer and non-fullerene molecule as a function of the electron-lattice constant (α).

    图 4  聚合物和非富勒烯分子激发态的束缚能(EB)随电子-晶格常数(α)的变化

    Figure 4.  The binding energy (EB) of excited states in the polymer and non-fullerene molecule as a function of the electron-lattice constant (α).

    图 5  不同电子-晶格相互作用常数时, 非富勒烯分子的HOMO和LUMO能级随中间基团给电子能力($ {\Delta _{{\text{on}}}} $)的变化 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Figure 5.  HOMO and LUMO energy levels of the non-fullerene molecule as a function of the electron-donating ability of the central group ($ {\Delta _{{\text{on}}}} $) for different electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 6  不同电子-晶格相互作用常数时, 非富勒烯分子的HOMO和LUMO能级随端基吸电子能力($ {\Delta '_{{\text{on}}}} $)的变化 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Figure 6.  HOMO and LUMO energy levels of the non-fullerene molecule as a function of the electron-withdrawing ability of the end group ($ {\Delta '_{{\text{on}}}} $) for differnet electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 7  电子-晶格相互作用常数分别为$ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $、$ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $和 $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $时, 非富勒烯分子激发态的束缚能(EB)随(a)中间基团给电子能力($ {\Delta _{{\text{on}}}} $)和(b)端基吸电子能力($ {\Delta '_{{\text{on}}}} $)的变化

    Figure 7.  Binding energy (EB) of excited states in the non-fullerene molecule as a function of (a) the electron-donating ability of the central group ($ {\Delta _{{\text{on}}}} $) and (b) the electron-withdrawing ability of the end group ($ {\Delta '_{{\text{on}}}} $) when the electron-lattice interaction constants is $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $, $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $, and $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $, respectively.

  • [1]

    Zhang G, Lin F R, Qi F, Heumüller T, Distler A, Egelhaaf H J, Li N, Chow P C Y, Brabec C J, Jen A K Y, Yip H L 2022 Chem. Rev. 122 14180Google Scholar

    [2]

    孟婧, 高博文 2023 物理学报 72 128801Google Scholar

    Meng J, Gao B W 2023 Acta Phys. Sin. 72 128801Google Scholar

    [3]

    Yang N, Zhang S, Cui Y, Wang J, Cheng S, Hou J 2025 Nat. Rev. Mater. 10 404Google Scholar

    [4]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [5]

    Cao Z, Tolba S A, Li Z, Mason G T, Wang Y, Do C, Rondeau-Gagné S, Xia W, Gu X 2023 Adv. Mater. 35 2302178Google Scholar

    [6]

    Shen D E, Lang A W, Collier G S, Österholm A M, Smith E M, Tomlinson A L, Reynolds J R 2022 Chem. Mater. 34 1041Google Scholar

    [7]

    Wang H, Lu H, Chen Y N, Ran G, Zhang A, Li D, Yu N, Zhang Z, Liu Y, Xu X, Zhang W, Bao Q, Tang Z, Bo Z 2022 Adv. Mater. 34 2105483.Google Scholar

    [8]

    An C, Hou J 2022 Acc. Mater. Res. 3 540Google Scholar

    [9]

    Jiang Y, Sun S, Xu R, Liu F, Miao X, Ran G, Liu K, Yi Y, Zhang W, Zhu X 2024 Nat. Energy 9 975Google Scholar

    [10]

    He D, Zhou J, Zhu Y, Li Y, Wang K, Li J, Zhang J, Li B, Lin Y, He Y, Wang C, Zhao F 2024 Adv. Mater. 36 2308909Google Scholar

    [11]

    Yang N, Zhang S, Cui Y, Wang J, Cheng S, Hou J 2025 Nat. Rev. Mater. 10 404Google Scholar

    [12]

    Li Z Y, Zhang X J, Kong X L, Zhang J Y, Sun R, Li J, Min J, Yang G, Song C J, Sun C K 2025 Sci. Chin. -Chem. 68 3797Google Scholar

    [13]

    Lu H, Li D, Liu W, Ran G, Wu H, Wei N, Tang Z, Liu Y, Zhang W, Bo Z 2024 Angew. Chem. Int. Ed. 63 e202407007Google Scholar

    [14]

    Jiang P, Liu Y, Song J, Bo Z 2024 Acc. Chem. Res. 57 3419Google Scholar

    [15]

    Yao H, Wang J, Xu Y, Hou J 2023 Chem. Mater. 35 807Google Scholar

    [16]

    Gao Y, Chen Q, Wang L, Huang H, Zhang A, Li C, Xu X, Bo Z 2022 J. Mater. Chem. C 10 10389Google Scholar

    [17]

    Kim B, Lee Y S, Um D H, Jeong W, Lee S, Kim K, Nam G, Hwang H, Kim S, Kim T, Lee K, Kang H, Kim B 2024 Adv. Funct. Mater. 34 2407403Google Scholar

    [18]

    Wang R, Zhang C, Li Q, Zhang Z, Wang X, Wang X 2020 J. Am. Chem. Soc. 142 12751Google Scholar

    [19]

    Zhang G, Chen X K, Xiao J, Chow P C Y, Ren M, Kupgan G, Jiao X, Chan C C S, Du X, Xia R, Chen Z, Yuan J, Zhang Y, Zhang S, Liu Y, Zou Y, Yan H, Wong K S, Coropceanu V, Li N, Brabec C J, Bredas J L, Yip H L, Cao Y 2020 Nat. Commun. 11 3943Google Scholar

    [20]

    Li P, Fang J, Wang Y, Manzhos S, Cai L, Song Z, Li Y, Song T, Wang X, Guo X, Zhang M, Ma D, Sun B 2021 Angew. Chem. Int. Ed. 60 15054Google Scholar

    [21]

    Chen Z, Zhu H 2022 J. Phys. Chem. Lett. 13 1123Google Scholar

    [22]

    Xu J, Jo S B, Chen X, Zhou G, Zhang M, Shi X, Lin F, Zhu L, Hao T, Gao K, Zou Y, Su X, Feng W, Jen A K Y, Zhang Y, Liu F 2022 Adv. Mater. 34 2108317Google Scholar

    [23]

    Zhang K N, Hao X T 2023 J. Phys. Chem. Lett. 14 6051Google Scholar

    [24]

    Ji Y, Xu L, Yin H, Cui B, Zhang L, Hao X, Gao K 2021 J. Mater. Chem. A 9 16834Google Scholar

    [25]

    Ji Y, Mu X, Yin H, Cui B, Hao X, Gao K 2023 J. Phys. Chem. Lett. 14 3811Google Scholar

    [26]

    Xu L, Qie Y, Jia X 2025 J. Phys. Chem. C 129 10775Google Scholar

    [27]

    Fu R, Shuai Z, Liu J, Sun X, Hicks J 1988 Phys. Rev. B 38 6298Google Scholar

    [28]

    Penson K A, Holz A, Bennemann K H 1976 Phys. Rev. B 13 433Google Scholar

    [29]

    Rawson J, Angiolillo P J, Therien M J 2015 Proc. Natl. Acad. Sci. 112 13779Google Scholar

    [30]

    Li C, Song J, Lai H, Zhang H, Zhou R, Xu J, Huang H, Liu L, Gao J, Li Y, Jee M H, Zheng Z, Liu S, Yan J, Chen X K, Tang Z, Zhang C, Woo H Y, He F, Gao F, Yan H, Sun Y 2025 Nat. Mater. 24 433Google Scholar

    [31]

    Zhu X, Zhang G, Zhang J, Yip H L, Hu B 2020 Joule 4 2443Google Scholar

    [32]

    Liu X, Li Y, Ding K, Forrest S 2019 Phys. Rev. Appl. 11 024060Google Scholar

    [33]

    Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z 2021 Angew. Chem. Int. Ed. 133 15476Google Scholar

    [34]

    Li S, Li C Z, Shi M, Chen H 2020 ACS Energy Lett. 5 1554Google Scholar

  • [1] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, doi: 10.7498/aps.73.20240047
    [2] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, doi: 10.7498/aps.73.20231570
    [3] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, doi: 10.7498/aps.71.20211839
    [4] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, doi: 10.7498/aps.68.20181872
    [5] Wang Wen-Jing, Li Chong, Zhang Mao-Mao, Gao Kun. Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field. Acta Physica Sinica, doi: 10.7498/aps.68.20190432
    [6] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, doi: 10.7498/aps.65.188201
    [7] Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing. Dynamics of polarons in organic conjugated polymers with impurity ions. Acta Physica Sinica, doi: 10.7498/aps.65.067202
    [8] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, doi: 10.7498/aps.64.186301
    [9] Huang Yong-Xian, Leng Jin-Song, Tian Xiu-Bo, Lü Shi-Xiong, Li Yao. The study on adaptability and effect of mesh-inducing for plasma immersion ion implantation on non-conductor polymer. Acta Physica Sinica, doi: 10.7498/aps.61.155206
    [10] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, doi: 10.7498/aps.61.194213
    [11] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, doi: 10.7498/aps.60.047105
    [12] Xu Guo-Liang, Xia Yao-Zheng, Liu Xue-Feng, Zhang Xian-Zhou, Liu Yu-Fang. Effect of external electric field excitation on titanium monoxide. Acta Physica Sinica, doi: 10.7498/aps.59.7762
    [13] Zhang Hong-Ping, Ouyang Jie, Ruan Chun-Lei. A multi-scale model with GENERIC structure of polymeric melt with fiber suspensions. Acta Physica Sinica, doi: 10.7498/aps.58.619
    [14] Xu Guo-Liang, Lü Wen-Jing, Liu Yu-Fang, Zhu Zun-Lüe, Zhang Xian-Zhou, Sun Jin-Feng. Effect of external electric field on the optical excitation of silicon dioxide. Acta Physica Sinica, doi: 10.7498/aps.58.3058
    [15] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, doi: 10.7498/aps.58.459
    [16] Xu Guo-Liang, Xiao Xiao-Hong, Geng Zhen-Duo, Liu Yu-Fang, Zhu Zheng-He. Effect of external electric field excitation on methyl vinyl siloxane. Acta Physica Sinica, doi: 10.7498/aps.56.5196
    [17] Wang Yi-Ping, Chen Jian-Ping, Li Xin-Wan, Zhou Jun-He, Shen Hao, Shi Chang-Hai, Zhang Xiao-Hong, Hong Jian-Xun, Ye Ai-Lun. Fast tunable electro-optic polymer waveguide gratings. Acta Physica Sinica, doi: 10.7498/aps.54.4782
    [18] Xu Guo-Liang, Zhu Zheng-He, Ma Mei-Zhong, Xie An-Dong. Study on the effect of external electric field excitation on methane. Acta Physica Sinica, doi: 10.7498/aps.54.3087
    [19] Cao Wan-Qiang, Li Jing-De. . Acta Physica Sinica, doi: 10.7498/aps.51.1634
    [20] HOU CHUN-FENG, ABDURUSUL, DU CHUN-GUANG, SUN XIU-DONG, LI SHI-QUN. SPATIAL SOLITONS IN PHOTOREFRACTIVE ORGANIC POLYMERS. Acta Physica Sinica, doi: 10.7498/aps.50.2159
Metrics
  • Abstract views:  355
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2025
  • Accepted Date:  17 July 2025
  • Available Online:  02 September 2025
  • /

    返回文章
    返回