Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field

Wang Wen-Jing Li Chong Zhang Mao-Mao Gao Kun

Citation:

Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field

Wang Wen-Jing, Li Chong, Zhang Mao-Mao, Gao Kun
PDF
HTML
Get Citation
  • Due to the exciton migration dynamics playing an important role in the photovoltaic process of organic solar cells, which are usually composed of polymer donor and fullerene (or non-fullerene) acceptor, in this paper we propose a new strategy to achieve the ultrafast exciton migration in polymers. Here, the effects of some nonuniform fields on the exciton migration dynamics in polymers are emphasized, such as the nonuniform electric field and the nonuniform polymer packing configuration field. Both of the two kinds of nonuniform fields can be intrinsically existent or modulated in an actual photovoltaic system. In this work, the nonuniform electric field and the nonuniform configuration field are assumed to be separately created by a confined charge and a linear polymer packing, therefore, their model Hamiltonian is established. In dynamical simulations of the exciton migration dynamics in polymers, an extended version of one-dimensional Su-Schrieffer-Heeger tight-binding model combined with a nonadiabatic evolution method is employed. It is found that the nonuniform electric field and the nonuniform configuration field both can drive exciton to an ultrafast migration process. Compared with the exciton migration speed dominated by the traditional Förster or Dexter mechanism, the exciton migration speed dominated by the nonuniform electric field and that by the nonuniform configuration field can be increased by one and two orders of magnitude, respectively. In addition, the driving mechanisms of the two kinds of nonuniform fields for the exciton migration dynamics are separately clarified, where the corresponding driving forces are also quantitatively calculated. Finally, in view of the factors affecting the distributions of the two kinds of nonuniform fields (such as the distance d between confined charge and polymer, and the linear packing slope k between polymers), we discuss their effects on the exciton migration dynamics. It is found that the exciton migration in polymer can be apparently accelerated by shortening the distance d between confined charge and polymer, and there exists a critical value of d, beyond which the exciton will be dissociated into free charges in its migration process. For the linear packing slope k between polymers, we find that there exists an optimal value, at which the exciton has the highest migration speed in polymers.
      Corresponding author: Wang Wen-Jing, wwj8686@163.com ; Gao Kun, gk@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674195).
    [1]

    Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar

    [2]

    An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar

    [3]

    於黄忠 2013 物理学报 62 027201Google Scholar

    Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar

    [4]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar

    [5]

    Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar

    [6]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar

    [7]

    Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar

    [8]

    Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar

    [9]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar

    [10]

    王文静, 孟瑞璇, 李元, 高琨 2014 物理学报 63 197901Google Scholar

    Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar

    [11]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar

    [12]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar

    [13]

    Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar

    [14]

    Heeger A J 2014 Adv. Mater. 26 10Google Scholar

    [15]

    Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar

    [16]

    Förster T 1948 Ann. Phys. 2 55

    [17]

    Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar

    [18]

    Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar

    [19]

    Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar

    [20]

    Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar

    [21]

    Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar

    [22]

    Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar

    [23]

    Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar

    [24]

    Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar

    [25]

    Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar

    [26]

    Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar

    [27]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [28]

    Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [29]

    Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar

    [30]

    Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar

    [31]

    Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar

    [32]

    Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar

    [33]

    Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar

    [34]

    赵二海, 孙鑫, 陈科, 付柔励 2000 物理学报 49 1778Google Scholar

    Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar

    [35]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar

    [36]

    McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar

    [37]

    McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar

  • 图 1  受限正电荷 (电荷量为$\left| e \right|$)相对于聚合物链的位置, d为电荷与链右端点的距离; 曲线为d = 3 nm时电场强度沿分子链的分布, 负号表示电场的方向与分子链的正方向相反

    Figure 1.  Schematic diagram about the position of a confined charge (q = $\left| e \right|$) relative to the polymer chain, d shows the distance between the charge and the right chain-end; the curve describes the distribution of the induced electric field E along the polymer chain with the case of d = 3 nm, where the minus sign means that the direction of the electric field is opposite to that of the chain.

    图 2  激子在非均匀电场(d = 3 nm)驱动下沿聚合物链超快输运对应的晶格动力学演化, 其初始产生时的中心位置为nc = 30

    Figure 2.  Time evolution about the lattice configuration of an exciton in a polymer chain driven by a nonuniform electric field with d = 3 nm, where the exciton is initially generated at a central position of nc = 30.

    图 3  非均匀电场诱导激子输运的驱动力F随时间的变化; 插图为t = 1000 fs时激子内极化的正电荷与负电荷的分布

    Figure 3.  Variation of the driving force F as a function of the time. The inset presents the polarized positive charges and negative charges in the exciton at the time t = 1000 fs.

    图 4  不同非均匀电场(通过改变d调控)驱动下激子中心位置nc随时间的演化

    Figure 4.  Time evolution of the exciton center nc along the polymer chain driven by different nonuniform electric fields, which can be modulated by changing the value of d.

    图 5  线性排列构型的耦合双分子链, dn为分子链垂直最近邻格点间的距离

    Figure 5.  Schematic diagram of two coupled polymer chains with a linear interchain packing configuration, where dn indicates the distance between the vertical-neighbor sites.

    图 6  激子在线性链间构型场 (k = 0.03)驱动下在分子间扩展及沿分子链输运的晶格动力学演化, 激子初始产生在第1条分子链上, 中心位置为nc = 30

    Figure 6.  Time evolution about the lattice configuration of an exciton in two coupled polymer chains driven by the nonuniform configuration field with a linear coefficient k = 0.03.

    图 7  线性构型场(k = 0.03)诱导的激子驱动力F沿分子链的分布, 插图为激子产生能$\Delta E$随链间距离dn的变化

    Figure 7.  Distribution of the driving force F along polymer chains driven by a linear configuration with k = 0.03. The inset presents the dependence of the exciton creation energy $\Delta E$ upon the interchain distance dn.

    图 8  不同线性分子排列构型场(通过改变k调控)下激子中心位置nc随时间的演化

    Figure 8.  Time evolution of the exciton center nc along polymer chains driven by different configuration fields, which can be modulated by changing the value of k.

  • [1]

    Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar

    [2]

    An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar

    [3]

    於黄忠 2013 物理学报 62 027201Google Scholar

    Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar

    [4]

    Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar

    [5]

    Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar

    [6]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar

    [7]

    Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar

    [8]

    Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar

    [9]

    Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar

    [10]

    王文静, 孟瑞璇, 李元, 高琨 2014 物理学报 63 197901Google Scholar

    Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar

    [11]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar

    [12]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar

    [13]

    Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar

    [14]

    Heeger A J 2014 Adv. Mater. 26 10Google Scholar

    [15]

    Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar

    [16]

    Förster T 1948 Ann. Phys. 2 55

    [17]

    Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar

    [18]

    Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar

    [19]

    Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar

    [20]

    Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar

    [21]

    Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar

    [22]

    Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar

    [23]

    Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar

    [24]

    Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar

    [25]

    Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar

    [26]

    Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar

    [27]

    Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [28]

    Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [29]

    Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar

    [30]

    Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar

    [31]

    Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar

    [32]

    Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar

    [33]

    Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar

    [34]

    赵二海, 孙鑫, 陈科, 付柔励 2000 物理学报 49 1778Google Scholar

    Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar

    [35]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar

    [36]

    McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar

    [37]

    McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar

  • [1] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [2] Cai Tian-Yi, Ju Sheng. Photovoltaic effect in ferroelectrics. Acta Physica Sinica, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [3] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [4] Feng Guo-Bao, Wang Fang, Cao Meng. Numerical simulation of multi-combined effects of parameters on polymer charging characteristics due to electron irradiation. Acta Physica Sinica, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [5] Yuan Xiao-Juan, Yuan Hui-Min, Zhang Cheng-Qiang, Wang Wen-Jing, Yu Yuan-Xun, Liu De-Sheng. Effects of uniform disorder on polaron dynamics in conjugated polymers. Acta Physica Sinica, 2015, 64(6): 067201. doi: 10.7498/aps.64.067201
    [6] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [7] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [8] Huang Yong-Xian, Leng Jin-Song, Tian Xiu-Bo, Lü Shi-Xiong, Li Yao. The study on adaptability and effect of mesh-inducing for plasma immersion ion implantation on non-conductor polymer. Acta Physica Sinica, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [10] Huang Yong-Xian, Lü Shi-Xiong, Tian Xiu-Bo, Yang Shi-Qin, Fu Ricky, Chu K Paul, Leng Jin-Song, Li Yao. Effect of physical properties of polymer on ion implantation. Acta Physica Sinica, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [11] Wu Li-Hua, Zhang Xiao-Zhong, Yu Yi, Wan Cai-Hua, Tan Xin-Yu. Photovoltaic effect of a-C: Fe/AlOx /Si based heterostructures. Acta Physica Sinica, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [12] Zhou Ke-Yu, Ye Hui, Zhen Hong-Yu, Yin Yi, Shen Wei-Dong. Study of tunable Fabry-Perot filter based on piezoelectric polymer film. Acta Physica Sinica, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [13] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [14] Zhang Hong-Ping, Ouyang Jie, Ruan Chun-Lei. A multi-scale model with GENERIC structure of polymeric melt with fiber suspensions. Acta Physica Sinica, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [15] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [16] Zhang Ya-Ni. High birefringence tunable effect of microstructured polymer optical fiber. Acta Physica Sinica, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [17] Wang Yi-Ping, Chen Jian-Ping, Li Xin-Wan, Zhou Jun-He, Shen Hao, Shi Chang-Hai, Zhang Xiao-Hong, Hong Jian-Xun, Ye Ai-Lun. Fast tunable electro-optic polymer waveguide gratings. Acta Physica Sinica, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [18] Cao Wan-Qiang, Li Jing-De. . Acta Physica Sinica, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [19] Zhang Xi-Juan, Li Guang-Qi, Sun Xin. . Acta Physica Sinica, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [20] HOU CHUN-FENG, ABDURUSUL, DU CHUN-GUANG, SUN XIU-DONG, LI SHI-QUN. SPATIAL SOLITONS IN PHOTOREFRACTIVE ORGANIC POLYMERS. Acta Physica Sinica, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
Metrics
  • Abstract views:  8416
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2019
  • Accepted Date:  15 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回