Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission

Liu Chao Liu Shi-Long Yang Yi Feng Jing Li Yu-Zhao

Citation:

K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission

Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao
PDF
HTML
Get Citation
  • Experimental study of physical quantities after fission provides crucial insights into the fission process, which is an indispensable way to test the fission theory. The characteristics of primary fission products before beta decay are of great value in unraveling fission kinematics and nuclear energy applications. However, the measurement of the fragment charge has always been challenging. Multi-parameter studies related to nuclear charge remain relatively scarce. The deexcitation of the primary fission products may undergo internal conversion and is often accompanied by characteristic X-ray emissions. Therefore, the correlated measurement of fragment kinetic energy and K X-rays for 252Cf spontaneous fission is conducted. A silicon surface barrier detector is used to measure the fragment kinetic energy, while two low-energy high-pure germanium detectors are utilized for K X-ray measurement. Identification of fission fragments with Z = 39–62 is realized through characteristic K X-rays with a charge resolution of ΔZ ≈ 0.7. Fission fragment K X-ray yields exhibit a strong charge correlation, with an odd-even effect factor of about 13%. Based on K X-rays, the post-neutron-emission average kinetic energy, average total kinetic energy $(\langle \rm TKE\rangle) $, and its dispersion ($ {\sigma }_{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $) of fission fragments are determined each as a function of nuclear charge. The kinetic energy distribution of light fragments shows a pronounced odd-even effect, with even-Z elements exhibiting kinetic energy enhanced by about 0.48 MeV compared with odd-Z fragments. The peak of the $(\langle\rm TKE\rangle) $ distribution is nearly Z = 52–53, while the minimum of the $ {\sigma }_{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $ appears near Z = 56, indicating the significant influence of deformed shells in the highly asymmetric fission region. The post-neutron kinetic energy distribution of fission fragments from 252Cf (sf) is calculated by using the GEF model and CGMF model. The CGMF model effectively reproduces the overall trend of kinetic energy as a function of charge number, while the results of the GEF calculation are systematically higher than the experimental values. Nonetheless, these two phenomenological models make it difficult to quantitatively describe the kinetic energy distribution of fission fragments accurately. In this study, the insights into K X-ray emissions and kinetic energy-nuclear charge relationships provide valuable reference data for independently measuring the fission yields and verifying the theoretical models of fission.
      Corresponding author: Liu Shi-Long, liusl@ciae.ac.cn
    • Funds: Project supported by the Key Laboratory of Nuclear Data Foundation, China (Grant No. JCKY23201C153) and the Continues-Support Basic Scientific Research Project, China (Grant No. BJ010261223282).
    [1]

    Lemaître J F, Goriely S, Hilaire S, Sida J L 2019 Phys. Rev. C 99 034612Google Scholar

    [2]

    Talou P, Stetcu I, Jaffke P, Rising M E, Lovell A E, Kawano T 2021 Comput. Phys. Commun. 269 108087Google Scholar

    [3]

    Scamps G, Simenel C 2018 Nature 564 382Google Scholar

    [4]

    Caamaño M, Farget F, Delaune O, Schmidt K H, Schmitt C, Audouin L, Bacri C O, Benlliure J, Casarejos E, Derkx X, Fernández-Domínguez B, Gaudefroy L, Golabek C, Jurado B, Lemasson A, Ramos D, Rodríguez-Tajes C, Roger T, Shrivastava A 2015 Phys. Rev. C 92 034606Google Scholar

    [5]

    Mariolopoulos G, Hamelin C, Blachot J, Bocquet J P, Brissot R, Crançon J, Nifenecker H, Ristori C 1981 Nucl. Phys. A 361 213Google Scholar

    [6]

    Lang W, Clerc H G, Wohlfarth H, Schrader H, Schmidt K H 1980 Nucl. Phys. A 345 34Google Scholar

    [7]

    Wang T F, Li G W, Zhu L P, Hen O, Zhang G L, Meng Q H, Wang L M, Han H Y, Xia H H 2017 Phys. Rev. C 96 034611Google Scholar

    [8]

    Knitter H H, Hambsch F J, Budtz-Jørgensen C 1992 Nucl. Phys. A 536 221Google Scholar

    [9]

    Boucheneb N, Asghar M, Barreau G, Doan T P, Leroux B, Sicre A, Geltenbort P, Oed A 1991 Nucl. Phys. A 535 77Google Scholar

    [10]

    Glendenin L E, Griffin H C 1965 Phys. Lett. 15 153Google Scholar

    [11]

    Kapoor S S, Bowman H R, Thompson S G 1965 Phys. Rev. 140 B1310Google Scholar

    [12]

    Reisdorf W, Unik J P, Griffin H C, Glendenin L E 1971 Nucl. Phys. A 177 337Google Scholar

    [13]

    Griffin H C 1990 J. Radioanal. Nucl. Chem. 142 279Google Scholar

    [14]

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese) [刘世龙, 杨毅, 李霞, 姜文刚, 韩洪银, 张春利 2017 原子能科学技术 51 343]Google Scholar

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese)Google Scholar

    [15]

    Algutifan N J, Sherman S R, Alexander C W 2015 Appl. Radiat. Isot. 96 135Google Scholar

    [16]

    Bé M M, Chechev V P, Dersch R, Helene O A, Helmer R G, Herman M, Hlaváč S, Marcinkowski A, Molnár G L, Nichols A L, Schönfeld E, Vanin V R, Woods M J 2007 Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications (Vol. 2) (Vienna: IAEA) p50

    [17]

    Tovesson F, Hambsch F J, Oberstedt S, Bax H 2002 J. Nucl. Sci. Technol. 39 673

    [18]

    Schmitt H W, Kiker W E, Williams C W 1965 Phys. Rev. 137 B837Google Scholar

    [19]

    Weissenberger E, Geltenbort P, Oed A, Gönnenwein F, Faust H 1986 Nucl. Instrum. Methods A 248 506Google Scholar

    [20]

    Waldo R W, Karam R A, Meyer R A 1981 Phys. Rev. C 23 1113Google Scholar

    [21]

    Schmidt K H, Jurado B, Amouroux C, Schmitt C 2016 Nucl. Data Sheets 131 107Google Scholar

    [22]

    Henschel H, Kohnle A, Hipp H, Gönnenwein G 1981 Nucl. Instrum. Methods 190 125Google Scholar

    [23]

    Rao M N, Biswas D C, Choudhury R K 1990 Nucl. Instrum. Methods B 51 102Google Scholar

    [24]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [25]

    Dolce S R, Gibson W M, Thomas T D 1969 Phys. Rev. 180 1177Google Scholar

    [26]

    Glendenin L E, Unik J P 1965 Phys. Rev. 140 B1301Google Scholar

    [27]

    Hopkins F F, White J R, Phillips G W, Moore C F, Richard P 1972 Phys. Rev. C 5 1015Google Scholar

    [28]

    Laurent R S, Phillips G W, Richard P, Moore C F 1971 Phys. Rev. C 4 1948Google Scholar

    [29]

    Hambsch F J, Oberstedt S 1997 Nucl. Phys. A 617 347Google Scholar

    [30]

    Böckstiegel C, Steinhäuser S, Schmidt K H, Clerc H G, Grewe A, Heinz A, de Jong M, Junghans A R, Müller J, Voss B 2008 Nucl. Phys. A 802 12Google Scholar

    [31]

    Chemey A, Pica A, Yao L, Loveland W, Lee H Y, Kuvin S A 2020 Eur. Phys. J. A 56 1Google Scholar

  • 图 1  裂变碎片与X射线符合测量装置示意图

    Figure 1.  Schematic view of the experimental setup for fission fragment and X-ray correlated measurement.

    图 2  低能高纯锗探测器的探测效率曲线

    Figure 2.  Detection efficiency curve for the low energy germanium detector.

    图 3  符合测量装置对X射线的绝对探测效率

    Figure 3.  Absolute X-ray detection efficiency for the correlated measurement setup.

    图 4  252Cf自发裂变的裂变碎片K X射线能谱

    Figure 4.  Fission fragment K X-ray energy spectrum for 252Cf (sf).

    图 5  金硅面垒半导体探测器对典型裂变碎片的能量响应

    Figure 5.  Energy response of the silicon surface barrier detector for typical fission fragments.

    图 6  252Cf自发裂变的放中子后裂变碎片能谱

    Figure 6.  Kinetic energy distribution of the post-neutron fragment from 252Cf (sf).

    图 7  (a)裂变碎片动能与K X射线能量二维谱; (b)依据K X射线能量开窗的碎片动能分布

    Figure 7.  (a) Two-dimensional histogram for fission fragment kinetic energies and K X-rays; (b) fission fragment kinetic energy distribution gated by K X-ray energy.

    图 8  252Cf自发裂变的K X射线相对产额与电荷数的关系

    Figure 8.  K X-ray yields of fission fragments as a function of nuclear charge for 252Cf (sf).

    图 9  252Cf自发裂变的平均每碎片K X射线产额与电荷数的关系

    Figure 9.  Average K X-rays per fragment as a function of nuclear charge for 252Cf(sf).

    图 10  裂变碎片的X射线-X射线二维谱

    Figure 10.  Two-dimensional histogram of X-ray-X-ray for fission fragments.

    图 11  252Cf自发裂变的放中子后裂变碎片平均动能与电荷的关系

    Figure 11.  The post-neutron fragment average kinetic energy as a function of nuclear charge for 252Cf (sf).

    图 12  252Cf自发裂变放中子后(a)平均总动能, (b)总动能分布宽度与裂变碎片电荷的关系

    Figure 12.  The nuclear charge-dependent of (a) post-neutron TKE and (b) the variance of the TKE distributions for 252Cf (sf).

    表 1  252Cf自发裂变的平均动能和平均总动能

    Table 1.  Average kinetic energy and average total kinetic energy of fission fragments for 252Cf (sf).

    $ \overline{{E}_{{\mathrm{L}}}} $/MeV $ \overline{{E}_{{\mathrm{H}}}} $/MeV $ \overline{{\mathrm{T}}{\mathrm{K}}{\mathrm{E}}} $/MeV
    本工作 102.42±0.02 78.65±0.03 181.07±0.04
    Weissenberger[19] 102.61 78.42 181.03
    Henschel[22] 102.58±1.15 78.67±0.60 181.25±1.30
    DownLoad: CSV
  • [1]

    Lemaître J F, Goriely S, Hilaire S, Sida J L 2019 Phys. Rev. C 99 034612Google Scholar

    [2]

    Talou P, Stetcu I, Jaffke P, Rising M E, Lovell A E, Kawano T 2021 Comput. Phys. Commun. 269 108087Google Scholar

    [3]

    Scamps G, Simenel C 2018 Nature 564 382Google Scholar

    [4]

    Caamaño M, Farget F, Delaune O, Schmidt K H, Schmitt C, Audouin L, Bacri C O, Benlliure J, Casarejos E, Derkx X, Fernández-Domínguez B, Gaudefroy L, Golabek C, Jurado B, Lemasson A, Ramos D, Rodríguez-Tajes C, Roger T, Shrivastava A 2015 Phys. Rev. C 92 034606Google Scholar

    [5]

    Mariolopoulos G, Hamelin C, Blachot J, Bocquet J P, Brissot R, Crançon J, Nifenecker H, Ristori C 1981 Nucl. Phys. A 361 213Google Scholar

    [6]

    Lang W, Clerc H G, Wohlfarth H, Schrader H, Schmidt K H 1980 Nucl. Phys. A 345 34Google Scholar

    [7]

    Wang T F, Li G W, Zhu L P, Hen O, Zhang G L, Meng Q H, Wang L M, Han H Y, Xia H H 2017 Phys. Rev. C 96 034611Google Scholar

    [8]

    Knitter H H, Hambsch F J, Budtz-Jørgensen C 1992 Nucl. Phys. A 536 221Google Scholar

    [9]

    Boucheneb N, Asghar M, Barreau G, Doan T P, Leroux B, Sicre A, Geltenbort P, Oed A 1991 Nucl. Phys. A 535 77Google Scholar

    [10]

    Glendenin L E, Griffin H C 1965 Phys. Lett. 15 153Google Scholar

    [11]

    Kapoor S S, Bowman H R, Thompson S G 1965 Phys. Rev. 140 B1310Google Scholar

    [12]

    Reisdorf W, Unik J P, Griffin H C, Glendenin L E 1971 Nucl. Phys. A 177 337Google Scholar

    [13]

    Griffin H C 1990 J. Radioanal. Nucl. Chem. 142 279Google Scholar

    [14]

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese) [刘世龙, 杨毅, 李霞, 姜文刚, 韩洪银, 张春利 2017 原子能科学技术 51 343]Google Scholar

    Liu S L, Yang Y, Li X, Jiang W G, Han H Y, Zhang C L 2017 At. Energy Sci. Technol. 51 343 (in chinese)Google Scholar

    [15]

    Algutifan N J, Sherman S R, Alexander C W 2015 Appl. Radiat. Isot. 96 135Google Scholar

    [16]

    Bé M M, Chechev V P, Dersch R, Helene O A, Helmer R G, Herman M, Hlaváč S, Marcinkowski A, Molnár G L, Nichols A L, Schönfeld E, Vanin V R, Woods M J 2007 Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications (Vol. 2) (Vienna: IAEA) p50

    [17]

    Tovesson F, Hambsch F J, Oberstedt S, Bax H 2002 J. Nucl. Sci. Technol. 39 673

    [18]

    Schmitt H W, Kiker W E, Williams C W 1965 Phys. Rev. 137 B837Google Scholar

    [19]

    Weissenberger E, Geltenbort P, Oed A, Gönnenwein F, Faust H 1986 Nucl. Instrum. Methods A 248 506Google Scholar

    [20]

    Waldo R W, Karam R A, Meyer R A 1981 Phys. Rev. C 23 1113Google Scholar

    [21]

    Schmidt K H, Jurado B, Amouroux C, Schmitt C 2016 Nucl. Data Sheets 131 107Google Scholar

    [22]

    Henschel H, Kohnle A, Hipp H, Gönnenwein G 1981 Nucl. Instrum. Methods 190 125Google Scholar

    [23]

    Rao M N, Biswas D C, Choudhury R K 1990 Nucl. Instrum. Methods B 51 102Google Scholar

    [24]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [25]

    Dolce S R, Gibson W M, Thomas T D 1969 Phys. Rev. 180 1177Google Scholar

    [26]

    Glendenin L E, Unik J P 1965 Phys. Rev. 140 B1301Google Scholar

    [27]

    Hopkins F F, White J R, Phillips G W, Moore C F, Richard P 1972 Phys. Rev. C 5 1015Google Scholar

    [28]

    Laurent R S, Phillips G W, Richard P, Moore C F 1971 Phys. Rev. C 4 1948Google Scholar

    [29]

    Hambsch F J, Oberstedt S 1997 Nucl. Phys. A 617 347Google Scholar

    [30]

    Böckstiegel C, Steinhäuser S, Schmidt K H, Clerc H G, Grewe A, Heinz A, de Jong M, Junghans A R, Müller J, Voss B 2008 Nucl. Phys. A 802 12Google Scholar

    [31]

    Chemey A, Pica A, Yao L, Loveland W, Lee H Y, Kuvin S A 2020 Eur. Phys. J. A 56 1Google Scholar

  • [1] Zhang Xin-Yuan, Hu Yi-Hua, Shen Shi-Yang, Fang Jia-Jie, Wang Yi-Cheng, Liu Yi-Fan, Han Fei. Kilometer-level laser reflective tomography experiment and debris barycenter estimation. Acta Physica Sinica, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] Liu Chang-Qi, Huo Dong-Ying, Han Chao, Wu Kang, Liu Xing-Yu, Yang Xu, Bai Xiao-Hou, Wang Jun-Run, Zhang Yu, Yao Ze-En, Wei Zheng. Monte-Carlo study of pre-neutron emission mass and energy for neutron-induced 232Th fission. Acta Physica Sinica, 2022, 71(1): 012501. doi: 10.7498/aps.71.20211333
    [3] Zheng Jian-Dong, Zhou Jiang, Pi Xiao-Li, Zou Chen, Li Yi-Fan, Xu Kun-Bo, Gong Zi-Zheng, Hu Guo-Jie. Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun. Acta Physica Sinica, 2021, 70(18): 188801. doi: 10.7498/aps.70.20210458
    [4] Peng Guo-Liang, Zhang Jun-Jie. Hydro-Magneto-PIC hybrid model for description of debris motion in high altitude nuclear explosions. Acta Physica Sinica, 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [5] Monte-Carlo study of the pre-neutron emission mass and energy for neutron-induced 232Th fission. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211333
    [6] Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection. Acta Physica Sinica, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [7] Li Hong-Wei, Han Jian-Wei, Wu Feng-Shi, Cai Ming-Hui, Zhang Zhen-Long. Detection of small space debris impact induced flash and its application. Acta Physica Sinica, 2014, 63(12): 129601. doi: 10.7498/aps.63.129601
    [8] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi, Zhang Zhen-Long. Simulation of small space debris impact inducing discharge using laser-induced plasma method. Acta Physica Sinica, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [9] Cai Ming-Hui, Wu Feng-Shi, Li Hong-Wei, Han Jian-Wei. Study on plasma characteristics from hypervelocity impacts by small space debris. Acta Physica Sinica, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [10] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi. Research of small space debris impact induced discharge. Acta Physica Sinica, 2013, 62(22): 229601. doi: 10.7498/aps.62.229601
    [11] Yang Bin, Niu Sheng-Li, Zhu Jin-Hui, Huang Liu-Xing. Research of the early debris expansion from high-altitude nuclear explosions. Acta Physica Sinica, 2012, 61(20): 202801. doi: 10.7498/aps.61.202801
    [12] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [13] Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Liu Dan-Qiu, Huang Jian-Guo, Han Jian-Wei. Discharging of charged material initiated by impacting of hypervelocity small debris. Acta Physica Sinica, 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [14] Huang Jiam-Guo, Liu Dan-Qiu, Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Han Jian-Wei. Simulation of culmulated microimpacts of micro debris to solar cells and function degradation. Acta Physica Sinica, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [15] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [16] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [17] Shi Yong, Li Qi-Feng, Wang Hua, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. An approach to obtain the photofragment translational energy distribution from time-of-flight profile. Acta Physica Sinica, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [18] Wang Zhong, Zhang Li-Min, Wang Feng, Li Jiang, Yu Shu-Qin. Study on the photofragment excitation spectrum of SO+2 in the range of 281-332nm. Acta Physica Sinica, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] Fa Wei, Luo Cheng-lin. . Acta Physica Sinica, 2000, 49(3): 430-434. doi: 10.7498/aps.49.430
    [20] . Acta Physica Sinica, 1966, 22(2): 245-249. doi: 10.7498/aps.22.245
Metrics
  • Abstract views:  393
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2024
  • Accepted Date:  01 June 2024
  • Available Online:  05 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回