Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential

Yu Xin-Ru Cui Ji-Feng Chen Xiao-Gang Mu Jiang-Yong Qiao Yu-Ran

Citation:

Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential

Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran
PDF
HTML
Get Citation
  • The time-periodic electroosmotic flow of a class of incompressible micropolar fluid in a parallel plate microchannel under high wall Zeta potential is studied in this work. Without using the Debye-Hückel linear approximation, the finite difference method is used to numerically solve the nonlinear Poisson-Boltzmann equation, the continuity equation, momentum equation, angular momentum equation, and constitutive equation of incompressible micropolar fluid. In the case of low Zeta potential, the results are compared with the analytical solution obtained in the Debye-Hückel linear approximation, and the feasibility of the numerical method is also proved. The influences of dimensionless parameters, such as electric width $ m $, electric oscillation frequency $ \varOmega $, and micro-polarity parameter $ {k_1} $ on the velocity and microrotation effect of incompressible micro-polarity fluid under high Zeta potential are discussed. The results are shown below. 1) With the increase of Zeta potential, the velocity, micro-rotation, volume flow, micro-rotation strength and shear stress of the micropolar fluid all increase, indicating that compared with the low Zeta potential, the high Zeta potential has a significant promotion effect on the electroosmotic flow of the micropolar fluid. 2) Under high Zeta potential, with the increase of the micro-polarity parameter, the velocity of the micropolar fluid decreases, and the micro-rotation effect shows a first-increasing-and-then-decreasing trend. 3) Under high Zeta potential, when the electric oscillation frequency is lower (less than 1), the increase of the electric width promotes the flow of the micropolar fluid, but impedes its micro-rotation; when the electric oscillation frequency is higher (greater than 1), the increase of the electric width impedes the flow and micro-rotation of the micropolar fluid, but expedites rapid increase of the volume flow rate and tends to be constant. 4) Under high Zeta potential, when the electric oscillation frequency is lower (less than 1), the electroosmotic flow velocity and micro-rotation of the micropolar fluid show an obvious oscillation trend with the change of the electric oscillation frequency, but the peak value of the velocity and micro-rotation, the volume flow rate and the micro-rotation intensity remain unchanged; when the electric oscillation frequency is higher (greater than 1), with the increase of the electric oscillation frequency, the amplitude of micropolar fluid electroosmotic flow velocity and the amplitude of microrotation decrease, and also the volume flow and microrotation intensity decrease until they reach zero. 5) Under high Zeta potential, the amplitude of wall shear stress $ {\sigma _{21}} $ and $ {\sigma _{12}} $ increase with the electric width increasing; when the electric oscillation frequency is lower (less than 1), the wall shear stress $ {\sigma _{21}} $ and $ {\sigma _{12}} $ do not change with the increase of the electric oscillation frequency, and the amplitude of the wall shear stress $ {\sigma _{21}} $is not affected by the value of the micro-polarity parameter; when the electric oscillation frequency is higher (greater than 1), the amplitude of wall shear stress $ {\sigma _{21}} $ and $ {\sigma _{12}} $ decrease with the increase of the electric oscillation frequency, and the amplitude of wall shear stress $ {\sigma _{21}} $ decreases with the increase of the micro-polarity parameter, while the amplitude of wall shear stress $ {\sigma _{12}} $ decreases linearly with the increase of the micro-polarity parameter.
      Corresponding author: Chen Xiao-Gang, xiaogang_chen@imut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 12062018, 12172333), the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, China (Grant No. NJYT22075), and the Basic Science Research Fund in the Universities Directly under the Inner Mongolia Autonomous Region, China (Grant Nos. JY20220331, JY20220063).
    [1]

    Osuga T, Sakamoto H, Takagi T 1996 J. Phys. Soc. Jpn. 65 1854Google Scholar

    [2]

    Polevoi V V, Bilova T E, Shevtsov Y I 2003 Biol. Bull 30 133Google Scholar

    [3]

    Dem'yanov A Y, Dinariev O Y, Sharaborin E L 2020 Russ. Phys. J. 63 113Google Scholar

    [4]

    Masuduzzaman M, Kim B H 2022 Langmuir 38 7244Google Scholar

    [5]

    Reuss F F 1809 Proc. Imp. Soc. Nat. Mos. 3 327

    [6]

    Patankar N A, Hu H H 1998 Anal. Chem. 70 1870Google Scholar

    [7]

    Gleeson J P 2002 J. Colloid Interface Sci. 249 217Google Scholar

    [8]

    Fu L M, Lin J Y, Yang R J 2003 J. Colloid Interface Sci. 258 266Google Scholar

    [9]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381Google Scholar

    [10]

    Park H M, Lee J S, Kim T W 2007 J. Colloid Interface Sci. 315 731Google Scholar

    [11]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001Google Scholar

    [12]

    Yoshida H 2016 Comput. Fluids 124 237Google Scholar

    [13]

    Nosrati R, Hadigol M, Raisee M 2010 Colloids Surface 372 190Google Scholar

    [14]

    Wang S, Zhao M, Li X, Wei S 2015 J. Appl. Fluid Mech. 8 323Google Scholar

    [15]

    Wang S W, Li N, Zhao M L, Azese M N 2018 Z. Naturforsch. A 73 825Google Scholar

    [16]

    Malekanfard A, Ko C H, Li D, Bulloch L, Baldwin A, Wang Y N, Fu L M, Xuan X C 2019 Phys. Fluids 31 022002Google Scholar

    [17]

    Gul F, Maqbool K, Mann A B 2021 J. Therm. Anal. Calorim. 3 2111Google Scholar

    [18]

    Mondal P K, Roy M 2021 Electrophoresis 42 2465Google Scholar

    [19]

    Alfwzan W F, Riaz A, Alammari M, Hejazi H A, EI-Din E T M 2023 Front. Phys. 11 112Google Scholar

    [20]

    Hoyt J W, Fabula A G 1964 The Effect of Additives on Fluid Friction (US Naval Ordinance Test Station Report

    [21]

    Eringen A C 1966 J. Math. Mech. 16 1Google Scholar

    [22]

    Papautsky I, Brazzle J, Ameel T, Frazier A B 1999 Sensor. Actuat. A-Phys. 73 101Google Scholar

    [23]

    Ali N, Hayat T 2008 Comp. Math. Appl. 55 589Google Scholar

    [24]

    Siddiqui A A, Lakhtakia A 2009 P. Roy. Soc. A-Math. Phy. 465 501Google Scholar

    [25]

    Wang Y Q, Hayat Tasawar, Oberlack Martin 2011 Appl. Math. Mod. 35 3737Google Scholar

    [26]

    Misra J C, Chandra S, Shit G C, Kundu P K 2014 Appl. Math. Mech. 35 749Google Scholar

    [27]

    Ding Z D, Jian Y J, Yang L G 2016 Appl. Math. Mech. 37 769Google Scholar

    [28]

    Ding Z D, Jian Y J, Wang L, Yang L G 2017 Phys. Fluids 29 082008Google Scholar

    [29]

    Chaube M K, Yadav A, Tripathi D, Beg O A 2018 Korea-Aust. Rheol. J. 30 89Google Scholar

    [30]

    Huang H F, Huang K H 2019 Meccanica 54 2151Google Scholar

    [31]

    Rana S, Nawaz M, Saleem S, Alharbi S O 2020 Phys. Scr. 95 045201Google Scholar

    [32]

    Zhu W Y 2021 Adv. Geo-Energy. Res. 5 465Google Scholar

    [33]

    Karampour F, Poshtiri A H, Hadizade A 2022 J. Braz. Soc. Mech. Sci. Eng. 44 198Google Scholar

    [34]

    Jaiswal S, Yadav P K 2022 Microfluid Nanofluid. 26 100Google Scholar

    [35]

    Narla V K, Tripathi, Dharmendra, Bhandari D S 2022 Int. J. Ambient. Eng. 43 8193Google Scholar

    [36]

    Fatunmbi E O, Adeosun A T, Okoya S S 2023 Int. J. Modell. Simul. 43 491Google Scholar

    [37]

    Rauf A, Sahar N, Siddiq M K, Mustafa F, Mushtaq T, Shehzad S A 2023 Chin. J. Phys. 83 147Google Scholar

  • 图 1  物理问题示意图

    Figure 1.  Physical problem diagram.

    图 2  低Zeta势下电势方程BVP4c所得解、有限差分法的数值解与D-H近似解析解对比图, 其中$ {\psi _0} = 1, \; $$ \beta = 1, m = 5 $

    Figure 2.  Comparison of solution of BVP4c, numerical solution of finite difference method and approximate analytical solution of D-H for potential equation at low Zeta potential, where $ {\psi _0} = 1, {\text{ }}\beta = 1, {\text{ }}m = 5 $

    图 3  低Zeta势下速度方程有限差分法数值解与D-H近似解析解对比图, 其中$ m = 5, {k_1} = 0.5, \beta = 1, $ $\varOmega = 0.251, $$ {\psi _0} = 1 $

    Figure 3.  Comparison of numerical solution of finite difference method and approximate analytical solution of D-H for velocity equation at low Zeta potential, where $ m = 5, $$ {k_1} = 0.5, \beta = 1, \varOmega = 0.251, {\psi _0} = 1 $.

    图 4  低Zeta势下微旋转方程有限差分法数值解与D-H近似解析解对比图, 其中$ m = 5,\; {k_1} = 0.5, \;\beta = 1, $$ \varOmega = 0.251, {\psi _0} = 1 $

    Figure 4.  Comparison of numerical solution of finite difference method and approximate analytical solution of D-H for microrotation equation at low Zeta potential, where $ m = 5, {k_1} = 0.5, \beta = 1, \varOmega = 0.251, {\psi _0} = 1 $.

    图 5  不同Zeta势和$ {k_1} $下无量纲速度分布, 其中$ m = 10, \beta = 1, {\text{ }}\varOmega = 0.251 $ $ ({\text{a}}){\text{ }}{k_1} = 0.5 $; $ ({\text{b}}){\text{ }}{\psi _0} = 2 $

    Figure 5.  Dimensionless velocity distribution for different Zeta potentials and $ {k_1} $, where $ m = 10, {\text{ }}\beta = 1, {\text{ }}\varOmega = 0.251 $: $ ({\text{a}}){\text{ }}{k_1} = 0.5 $; $ ({\text{b}}){\text{ }}{\psi _0} = 2 $.

    图 6  不同m和$ \varOmega $下无量纲速度分布, 其中$ {\psi _0} = 2, {\text{ }}{k_1} = 0.5, {\text{ }}\beta = 1 $ (a) $ \varOmega $= 0.251; (b) $ \varOmega $= 0.5; (c) $ \varOmega $= 25.1; (d) $ \varOmega $= 251

    Figure 6.  Dimensionless velocity distribution for different m and $ \varOmega $, where $ {\psi _0} = 2, {\text{ }}{k_1} = 0.5, {\text{ }}\beta = 1 $: (a) $ \varOmega $=0.251; (b) $ \varOmega $=0.5; (c) $ \varOmega $=25.1; (d) $ \varOmega $=251.

    图 7  不同Zeta势和$ {k_1} $下无量纲微旋转分布, 其中$ m = 10, {\text{ }}\beta = 1, {\text{ }}\varOmega = 0.251 $ (a) $ {k_1} = 0.5 $; $ ({\text{b}}){\text{ }}{\psi _0} = 2 $

    Figure 7.  Dimensionless micro-rotating profiles distribution for different Zeta potentials and $ {k_1} $, where $ m = 10, {\text{ }}\beta = 1, {\text{ }}\varOmega = 0.251 $: (a) $ {k_1} = 0.5 $; $ ({\text{b}}){\text{ }}{\psi _0} = 2 $.

    图 8  不同m和$ \varOmega $下无量纲微旋转分布, 其中$ {\psi _0} = 2, {\text{ }}{k_1} = 0.5, {\text{ }}\beta = 1 $ (a) $ \varOmega $=0.251; (b) $ \varOmega $=0.5; (c) $ \varOmega $=25.1; (d) $ \varOmega $=251

    Figure 8.  Dimensionless micro-rotation distribution under different m and $ \varOmega $, where $ {\psi _0} = 2, {\text{ }}{k_1} = 0.5, {\text{ }}\beta = 1 $: (a) $ \varOmega $=0.251; (b) $ \varOmega $=0.5; (c) $ \varOmega $=25.1; (d) $ \varOmega $=251.

    图 9  不同Zeta势下$ {Q_0} $的变化, 其中$ \varOmega = 0.251, \beta = 1 $ (a) $ {k_1} = 0.5 $; (b) m = 50

    Figure 9.  Change of $ {Q_0} $ under different Zeta potentials, where $ \varOmega = 0.251, \beta = 1 $: (a) $ {k_1} = 0.5 $; (b) m = 50.

    图 10  不同$ {k_1} $和$ \varOmega $下无量纲体积流量振幅与m和$ {k_1} $的关系, 其中$ {\psi _0} = 2, \beta = 1 $ (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5

    Figure 10.  Dependence of amplitude of normalized volume flow rate on m and $ {k_1} $for different $ {k_1} $ and $ \varOmega $, where $ {\psi _0} = 2, \beta = 1 $: (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5.

    图 11  不同Zeta势下$ {W_0} $的变化, 其中$ m = 10, \beta = 1 $ (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5

    Figure 11.  Change of $ {W_0} $ under different Zeta potentials, where $ m = 10, \beta = 1 $: (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5.

    图 12  不同$ m $下无量纲微旋转强度振幅与$ \varOmega $和$ {k_1} $的关系, 其中$ {\psi _0} = 2, \beta = 1 $ (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5

    Figure 12.  Amplitude of dimensionless microrotation strength on $ \varOmega $ and $ {k_1} $ for different $ m $, where $ {\psi _0} = 2, \beta = 1 $: (a) $ \varOmega $=0.251; (b) $ {k_1} $=0.5.

    图 13  不同Zeta势下$ {\sigma _{21}} $(a)和$ {\sigma _{12}} $(b)的变化, 其中$ m = 50, \beta = 1, \varOmega = 0.251 $

    Figure 13.  Change of $ {\sigma _{21}} $ (a) and $ {\sigma _{12}} $ (b) under different Zeta potentials, where $ m = 50, \beta = 1, \varOmega = 0.251 $.

    图 14  不同m和$ {k_1} $下壁面剪切应力$ {\sigma _{21}} $与$ {k_1} $和$ \varOmega $的关系, 其中$ {\psi _0} = 2, \beta = 1 $ (a) $ \varOmega $=0.251; (b) m = 10

    Figure 14.  Relationship between wall shear stress $ {\sigma _{21}} $and $ {k_1} $ and $ \varOmega $ under different m and $ {k_1} $, where $ {\psi _0} = 2, \beta = 1 $: (a) $ \varOmega $= 0.251; (b) m = 10.

    图 15  不同m和$ {k_1} $下壁面剪切应力$ {\sigma _{12}} $与$ {k_1} $和$ \varOmega $的关系, 其中$ {\psi _0} = 2, \beta = 1 $ (a) $ \varOmega $=0.251; (b) m = 10

    Figure 15.  Relationship between wall shear stress $ {\sigma _{12}} $and $ {k_1} $ and $ \varOmega $ under different m and $ {k_1} $, where $ {\psi _0} = 2, \beta = 1 $: (a) $ \varOmega $=0.251; (b) m = 10.

  • [1]

    Osuga T, Sakamoto H, Takagi T 1996 J. Phys. Soc. Jpn. 65 1854Google Scholar

    [2]

    Polevoi V V, Bilova T E, Shevtsov Y I 2003 Biol. Bull 30 133Google Scholar

    [3]

    Dem'yanov A Y, Dinariev O Y, Sharaborin E L 2020 Russ. Phys. J. 63 113Google Scholar

    [4]

    Masuduzzaman M, Kim B H 2022 Langmuir 38 7244Google Scholar

    [5]

    Reuss F F 1809 Proc. Imp. Soc. Nat. Mos. 3 327

    [6]

    Patankar N A, Hu H H 1998 Anal. Chem. 70 1870Google Scholar

    [7]

    Gleeson J P 2002 J. Colloid Interface Sci. 249 217Google Scholar

    [8]

    Fu L M, Lin J Y, Yang R J 2003 J. Colloid Interface Sci. 258 266Google Scholar

    [9]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381Google Scholar

    [10]

    Park H M, Lee J S, Kim T W 2007 J. Colloid Interface Sci. 315 731Google Scholar

    [11]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001Google Scholar

    [12]

    Yoshida H 2016 Comput. Fluids 124 237Google Scholar

    [13]

    Nosrati R, Hadigol M, Raisee M 2010 Colloids Surface 372 190Google Scholar

    [14]

    Wang S, Zhao M, Li X, Wei S 2015 J. Appl. Fluid Mech. 8 323Google Scholar

    [15]

    Wang S W, Li N, Zhao M L, Azese M N 2018 Z. Naturforsch. A 73 825Google Scholar

    [16]

    Malekanfard A, Ko C H, Li D, Bulloch L, Baldwin A, Wang Y N, Fu L M, Xuan X C 2019 Phys. Fluids 31 022002Google Scholar

    [17]

    Gul F, Maqbool K, Mann A B 2021 J. Therm. Anal. Calorim. 3 2111Google Scholar

    [18]

    Mondal P K, Roy M 2021 Electrophoresis 42 2465Google Scholar

    [19]

    Alfwzan W F, Riaz A, Alammari M, Hejazi H A, EI-Din E T M 2023 Front. Phys. 11 112Google Scholar

    [20]

    Hoyt J W, Fabula A G 1964 The Effect of Additives on Fluid Friction (US Naval Ordinance Test Station Report

    [21]

    Eringen A C 1966 J. Math. Mech. 16 1Google Scholar

    [22]

    Papautsky I, Brazzle J, Ameel T, Frazier A B 1999 Sensor. Actuat. A-Phys. 73 101Google Scholar

    [23]

    Ali N, Hayat T 2008 Comp. Math. Appl. 55 589Google Scholar

    [24]

    Siddiqui A A, Lakhtakia A 2009 P. Roy. Soc. A-Math. Phy. 465 501Google Scholar

    [25]

    Wang Y Q, Hayat Tasawar, Oberlack Martin 2011 Appl. Math. Mod. 35 3737Google Scholar

    [26]

    Misra J C, Chandra S, Shit G C, Kundu P K 2014 Appl. Math. Mech. 35 749Google Scholar

    [27]

    Ding Z D, Jian Y J, Yang L G 2016 Appl. Math. Mech. 37 769Google Scholar

    [28]

    Ding Z D, Jian Y J, Wang L, Yang L G 2017 Phys. Fluids 29 082008Google Scholar

    [29]

    Chaube M K, Yadav A, Tripathi D, Beg O A 2018 Korea-Aust. Rheol. J. 30 89Google Scholar

    [30]

    Huang H F, Huang K H 2019 Meccanica 54 2151Google Scholar

    [31]

    Rana S, Nawaz M, Saleem S, Alharbi S O 2020 Phys. Scr. 95 045201Google Scholar

    [32]

    Zhu W Y 2021 Adv. Geo-Energy. Res. 5 465Google Scholar

    [33]

    Karampour F, Poshtiri A H, Hadizade A 2022 J. Braz. Soc. Mech. Sci. Eng. 44 198Google Scholar

    [34]

    Jaiswal S, Yadav P K 2022 Microfluid Nanofluid. 26 100Google Scholar

    [35]

    Narla V K, Tripathi, Dharmendra, Bhandari D S 2022 Int. J. Ambient. Eng. 43 8193Google Scholar

    [36]

    Fatunmbi E O, Adeosun A T, Okoya S S 2023 Int. J. Modell. Simul. 43 491Google Scholar

    [37]

    Rauf A, Sahar N, Siddiq M K, Mustafa F, Mushtaq T, Shehzad S A 2023 Chin. J. Phys. 83 147Google Scholar

  • [1] Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun. Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel. Acta Physica Sinica, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] Mu Jiang-Yong, Cui Ji-Feng, Chen Xiao-Gang, Zhao Yi-Kang, Tian Yi-Lin, Yu Xin-Ru, Yuan Man-Yu. Electroosmotic flow and heat transfer characteristics of a class of biofluids in microchannels at high Zeta potential. Acta Physica Sinica, 2024, 73(6): 064701. doi: 10.7498/aps.73.20231685
    [3] Gao Xiao-Wei, Ding Jin-Xing, Liu Hua-Yu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Physica Sinica, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [4] Zhang Tian-Ge, Ren Mei-Rong, Cui Ji-Feng, Chen Xiao-Gang, Wang Yi-Dan. Rotational electroosmotic slip flow of power-law fluid at high zeta potential in variable-section microchannel. Acta Physica Sinica, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [5] He Yu-Bo, Tang Xian-Hua, Lin Xiao-Yan. Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method. Acta Physica Sinica, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [6] Duan Juan, Chen Yao-Qin, Zhu Qing-Yong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser. Acta Physica Sinica, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [7] Jiang Yu-Ting, Qi Hai-Tao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel. Acta Physica Sinica, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [8] Wang Guang-Hui, Wang Lin-Xue, Wang Deng-Shan, Liu Cong-Bo, Shi Yu-Ren. Numerical investigation on the interaction between multi-Compacton of K(m,n,p) equation. Acta Physica Sinica, 2014, 63(18): 180206. doi: 10.7498/aps.63.180206
    [9] Peng Wu, He Yi-Gang, Fang Ge-Feng, Fan Xiao-Teng. An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method. Acta Physica Sinica, 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [10] Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates. Acta Physica Sinica, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [11] Lu Si-Long, Wu Xian-Liang, Ren Xin-Gang, Mei Yi-Cai, Shen Jing, Huang Zhi-Xiang. Study of periodic dispersive structures using splitfield FDTD method. Acta Physica Sinica, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [12] Chang Long, Jian Yong-Jun. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential. Acta Physica Sinica, 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [13] Jiang Hong-Yuan, Li Shan-Shan, Hou Zhen-Xiu, Ren Yu-Kun, Sun Yong-Jun. Effect of asymmetrical micro electrode surface topography on alternating current electroosmosis flow rate. Acta Physica Sinica, 2011, 60(2): 020702. doi: 10.7498/aps.60.020702
    [14] Hu Geng-Jun, Li Jing, Long Qian, Tao Tao, Zhang Gong-Xuan, Wu Xiao-Ping. FDTD numerical simulation of the trapping force of microspherein single optical tweezers. Acta Physica Sinica, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [15] Jiang Hong-Yuan, Ren Yu-Kun, Tao Ye. Electrorotation manipulation of microparticles induced by torque and electroosmotic slip in microsystem. Acta Physica Sinica, 2011, 60(1): 010701. doi: 10.7498/aps.60.010701
    [16] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [17] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Dynamics of relaxation oscillation caused by stimulated Brillouin scattering in optical fiber and its suppression. Acta Physica Sinica, 2009, 58(12): 8316-8325. doi: 10.7498/aps.58.8316
    [18] Tan Xin-Yu, Zhang Duan-Ming, Li Zhi-Hua, Guan Li, Li Li. Target ablation characteristics of thin films during nanosecond pulsed laser deposition in the ablation process. Acta Physica Sinica, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [19] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] XI JIN-HUA, WU LI-JIN. MANY-BODY PERTURBATION THEORETICAL CALCU-LATION WITH FINITE BASIS SETS CONSTRUCTED FROM B SPLINES. Acta Physica Sinica, 1992, 41(11): 1759-1764. doi: 10.7498/aps.41.1759
Metrics
  • Abstract views:  1677
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2024
  • Accepted Date:  15 July 2024
  • Available Online:  20 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回