Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of hydrogen embrittlement behavior and mechanism of Ti-2.5Al-2Zr-1Fe by slow strain rate method

Zhao You-Peng Liu Xiao-Yong Liu Hui Fang Kun Wang Jia Luo Xian-Fu Xu Ning Sun Xu-Lu Liu Yu Gao Yu-Hao Wu Ze-Peng Li Xue-Feng Zhang Xin-Yao

Citation:

Study of hydrogen embrittlement behavior and mechanism of Ti-2.5Al-2Zr-1Fe by slow strain rate method

Zhao You-Peng, Liu Xiao-Yong, Liu Hui, Fang Kun, Wang Jia, Luo Xian-Fu, Xu Ning, Sun Xu-Lu, Liu Yu, Gao Yu-Hao, Wu Ze-Peng, Li Xue-Feng, Zhang Xin-Yao
cstr: 32037.14.aps.73.20240896
PDF
HTML
Get Citation
  • The Ti-2.5Al-2Zr-1Fe used as hull structural material, is susceptible to hydrogen embrittlement induced by corrosion and hydrogen evolution in marine environments. Considering the long-term service of ships, the hydrogen embrittlement behavior under slow strain rate is crucial for evaluating the alloy’s service performance and ensuring long-term ship structural safety. In order to investigate the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy under slow strain rate conditions, this study combines slow tension and constant displacement loading techniques to systematically evaluate the attenuation of mechanical properties and the dynamic changes in hydrogen embrittlement sensitivity of hydrogen-containing Ti-2.5Al-2Zr-1Fe alloy. Employing scanning electron microscopy (SEM), we thoroughly analyze the microstructural features of fracture surfaces. Meanwhile, the close correlation between the brittle zone at the fracture site and the macroscopic distribution of hydrogen atoms is elucidated by using secondary ion mass spectrometry (SIMS). Additionally, theoretical analysis based on diffusion equations reveals a notable increase in hydrogen diffusion distance within the Ti-2.5Al-2Zr-1Fe alloy as hydrogen charging time increases. Further, using the dislocation-hydrogen interaction model, we derive a critical strain rate threshold $ {\varepsilon _0} = {{\left( {30RT} \right)} {/ } {\left( {\rho DE} \right)}} $ for dislocation-mediated hydrogen transport in titanium alloys. When the externally applied strain rate ε falls below this threshold, dislocations efficiently capture and transport hydrogen atoms, enhancing hydrogen diffusion depth and significantly augmenting the alloy’s hydrogen embrittlement sensitivity, thereby accelerating material embrittlement. The Vickers-hardness (HV) test further elucidates the dual nature of hydrogen’s influence on titanium alloy properties: although moderate hydrogen content slightly enhances surface hardness, exceeding a specific threshold leads to a major negative influence on plasticity, far exceeding the benefits of surface hardening, resulting in a substantial decline in overall mechanical performance. To comprehensively decipher the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy, transmission electron microscopy (TEM) is employed to analyze the phase composition in regions of high hydrogen concentration, crack tips, and their vicinities. The analysis results indicate that no direct precipitation of hydrides is observed; instead, hydrogen atoms preferentially accumulate in the β-phase, prompting microcrack propagation along β-phase boundaries. According to the aforementioned experimental data and microstructural analysis, we propose that the hydrogen embrittlement mechanism in Ti-2.5Al-2Zr-1Fe alloy is primarily governed by the HEDE mechanism. Furthermore, when the strain rate falls below ε0, it synergizes with the dislocation-mediated hydrogen transport mechanism, vastly expanding the influence scope of the HEDE mechanism and exacerbating the alloy’s hydrogen embrittlement sensitivity.
      Corresponding author: Liu Xiao-Yong, liuxiaoyongsjtu@163.com
    • Funds: Project supported by the Heluo Young Talents Supporting Project, China (Grant No. 2022HLTJZC04).
    [1]

    杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森 2021 金属学报 57 1455Google Scholar

    Yang R, Ma Y J, Lei J F, Hu Q M, Huang S S 2021 Acta Metall. Sin. 57 1455Google Scholar

    [2]

    何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐 2018 物理学报 67 050203Google Scholar

    He Y, Zhou G, Liu Y X, Wang H, Xu D S, Yang R 2018 Acta. Phys. Sin. 67 050203Google Scholar

    [3]

    吴明宇, 弭光宝, 李培杰 2024 物理学报 73 086103Google Scholar

    Wu M Y, Mi G B, Li P J 2024 Acta. Phys. Sin. 73 086103Google Scholar

    [4]

    丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍 2022 物理学报 71 028102Google Scholar

    Ding Z S, Gao W, Wei J P, Jin Y H, Zhao C, Yang W 2022 Acta. Phys. Sin. 71 028102Google Scholar

    [5]

    Robertson I M, Sofronis P, Nagao A 2015 Metall. Mater. Trans. A 46 2323Google Scholar

    [6]

    Venezuela J, Zhou Q J, Liu Q L 2018 Mater. Today Commun. 17 1Google Scholar

    [7]

    Olden V, Thaulow C, Johnsen R 2008 Mater. Des. 29 1934Google Scholar

    [8]

    Lynch S P 2007 NACE International Corrosion Conference Nashville, Tennessee, March, 2007 p07493

    [9]

    Wang X, Zhu R T, Li C Y, Wang X, Huang P F 2020 Rare Met. Mater. Eng. 49 3769

    [10]

    Zhang S Q, Wan J F, Zhao Q Y 2020 Corros. Sci 164 108345Google Scholar

    [11]

    Xu Y L, Li L T 2021 Mater. Res. Express 8 046531Google Scholar

    [12]

    汪洋, 吴冰, 宿彦京, 邢焰, 王向轲, 高鸿, 李岩 2020 有色金属工程 10 33Google Scholar

    Wang Y, Wu B, Su Y J, Xing Y, Wang X K, Gao H, Li Y 2020 Nonferrous Met. Eng. 10 33Google Scholar

    [13]

    Sun Z G, Hou H L 2008 J. Alloys Compd. 476 550Google Scholar

    [14]

    Liu X Y, Wang J, Gao L Q 2021 J. Alloys Compd. 862 158669Google Scholar

    [15]

    Tien J, Thompson A W, Bernstein I M 1976 Metall. Trans. A 7 821Google Scholar

    [16]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [17]

    周伟, 姚泽坤, 谭立军, 郭鸿镇, 张建伟, 梁晓波 2011 稀有金属材料与工程 40 1230

    Zhou W, Yao Z K, Tan L J, Guo H Z, Zhang J W, Liang X B 2011 Rare Met. Mater. Eng. 40 1230

    [18]

    赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚 2018 金属学报 54 1031Google Scholar

    Zhao X L, Zhang Y J, Shao C W, Hui W J, Dong H 2018 Acta Metall. Sin. 54 1031Google Scholar

    [19]

    张滨, 郑华, 刘实, 王隆保 2005 原子能科学技术 39 522Google Scholar

    Zhang B, Zheng H, Liu S, Wang L B 2005 At. Energy Sci. Technol. 39 522Google Scholar

    [20]

    Chen C Q, Li S X, Lu K 2003 Acta Mater. 51 931Google Scholar

    [21]

    王艳飞, 巩建鸣, 蒋文春, 姜勇, 唐建群 2011 金属学报 47 594

    Wang Y F, Gong J M, Jiang W C, Jiang Y, Tang J Q 2011 Acta Metall. Sin. 47 594

    [22]

    刘战伟 2009 桂林电子科技大学学报 29 108Google Scholar

    Liu Z W 2009 J. Guilin Univ. Electron. Technol. 29 108Google Scholar

    [23]

    孙志杰, 王洋 2020 材料开发与应用 35 94

    Sun Z J, Wang Y 2020 Dev. Appl. Mater. 35 94

    [24]

    刘晓镇, 韩恩厚, 宋影伟 2023 中国有色金属学报 33 307Google Scholar

    Liu X Z, Han E H, Song Y W 2023 Chin. J. Nonferrous Met. 33 307Google Scholar

    [25]

    王秀英, 孙力玲, 刘日平, 姚玉书, 张君, 王文魁 2004 物理学报 53 3845Google Scholar

    Wang X Y, Sun L L, Liu R P, Yao Y S, Zhang J, Wang W K 2004 Acta Phys. Sin. 53 3845Google Scholar

    [26]

    孙永伟, 陈继志, 刘军 2015 金属学报 51 1315

    Sun Y W, Chen J Z, Liu J 2015 Acta Metall. Sin. 51 1315

    [27]

    李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明 2014 物理学报 63 236101Google Scholar

    Li H J, Sun G A, Gong J, Chen B, Wang H, Li J, Pang B B, Zhang Y, Peng S M 2014 Acta Phys. Sin. 63 236101Google Scholar

    [28]

    Kan B, Wu W J, Yang Z X, Li J X 2020 Mater. Sci. Eng. A 775 138963Google Scholar

    [29]

    Wang M Q, Akiyama E, Tsuzaki K 2007 Corros. Sci. 49 4081Google Scholar

    [30]

    王贞, 刘静, 张施琦, 黄峰 2022 中国腐蚀与防护学报 42 106Google Scholar

    Wang Z, Liu J, Zhang S Q, Huang F 2022 J. Chin. Soc. Corros. Prot. 42 106Google Scholar

  • 图 1  Ti-2.5Al-2Zr-1Fe微观组织图

    Figure 1.  Microstructures of the Ti-2.5Al-2Zr-1Fe plate used in this work.

    图 2  圆棒拉伸试样尺寸(单位为 mm)

    Figure 2.  Dimensions of tensile specimen used in this work (unit: mm).

    图 3  WOL试样尺寸图(单位为 mm)

    Figure 3.  Dimensions of WOL sample used in this work (unit: mm).

    图 4  聚焦离子束(FIB)制取TEM试样过程示意图

    Figure 4.  Process of preparing TEM samples by focused ion beam (FIB) used in this work.

    图 5  取测氢试样的取样示意图

    Figure 5.  Schematic diagram of the sampling of H content test

    图 6  不同充氢时间下的拉伸曲线 (a) 常规拉伸; (b) 慢应变拉伸

    Figure 6.  Tensile stress-strain curves of the differently charged samples: (a) Conventional tensile test; (b) slow strain tensile test

    图 7  两种应变速率下性能变化 (a) 断面收缩率; (b) 延伸率; (c) 抗拉强度

    Figure 7.  Variation curves of mechanical properties of samples at different strain rates: (a) Reduction of area; (b) percentage elongation; (c) tensile strength.

    图 8  两种应变速率下的氢脆敏感性变化

    Figure 8.  Variation curves of hydrogen embrittlement sensitivity at different strain rates.

    图 9  常规拉伸试样断口的宏观和微观形貌图 (a), (b), (c) 0 h常规拉伸试样; (d), (e), (f) 8 h常规拉伸试样

    Figure 9.  Macroscopic and microscopic morphology of fracture surface in the conventional tensile test: (a), (b), (c) The 0 h conventional tensile sample; (d), (e), (f) the 8 h conventional tensile sample.

    图 10  慢拉伸试样断口的宏观和微观形貌图 (a), (b), (c) 0 h慢拉伸试样; (d), (e), (f) 8 h慢拉伸试样

    Figure 10.  Macroscopic and microscopic morphology of fracture surface in the slow tensile test: (a), (b), (c) The 0 h slow tensile sample; (d), (e), (f) the 8 h slow tensile sample.

    图 11  不同充氢时间下试样断口的宏观形貌图 (a)—(d) 24—264 h的常规拉伸试样; (e)—(h) 24—264 h的慢拉伸试样

    Figure 11.  Macroscopic morphology of the fracture surface of the differently charged samples: (a)–(d) The conventional tensile samples are 24–264 h; (e)–(h) the slow tensile samples are 24–264 h.

    图 12  试样表面硬度随充氢时间的变化

    Figure 12.  Variation of surface hardness of specimen with charging time.

    图 13  二次离子质谱分析结果 (a)氘的分布; (b)铝的分布

    Figure 13.  The SIMS analysis results of Ti-2.5A1-2Zr-1Fe alloy: (a) Distribution of deuterium; (b) distribution of aluminum.

    图 14  不同温度下氢分布情况

    Figure 14.  Distribution of hydrogen at different temperatures.

    图 15  充氢48 h WOL试样的断口宏观形貌

    Figure 15.  Macro-morphology of fracture surface of WOL sample in constant displacement experiment after pre-cracking after 48 hours of charging.

    图 16  (a) 充氢48 h WOL试样断口TEM形貌; (b) A区域的SAED图样; (c) B区域的SAED图样

    Figure 16.  (a) The TEM morphology of fracture surface of WOL sample charged with hydrogen for 48 h; (b) the SAED pattern in area A; (c) the SAED pattern in area B.

    图 17  Ti-2.5Al-2Zr-1Fe合金不同充氢时间下氢扩散深度理论值

    Figure 17.  Theoretical values of hydrogen diffusion depth of Ti-2.5A1-2Zr-1Fe alloy at different charging time.

    图 18  载氢位错与相界交互行为及其机制示意图

    Figure 18.  Schematic Diagram of the interaction behavior and mechanism between hydrogen-loaded dislocations and phase boundaries.

    表 1  二次离子质谱测试参数

    Table 1.  Parameters of SIMS testing.

    入射能量/keV 入射角/(°) 电流强度/pA 扫描面积/m2 极性及质量范围/amu
    30 45 1.142 500×500 负离子模式 0—227
    DownLoad: CSV
  • [1]

    杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森 2021 金属学报 57 1455Google Scholar

    Yang R, Ma Y J, Lei J F, Hu Q M, Huang S S 2021 Acta Metall. Sin. 57 1455Google Scholar

    [2]

    何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐 2018 物理学报 67 050203Google Scholar

    He Y, Zhou G, Liu Y X, Wang H, Xu D S, Yang R 2018 Acta. Phys. Sin. 67 050203Google Scholar

    [3]

    吴明宇, 弭光宝, 李培杰 2024 物理学报 73 086103Google Scholar

    Wu M Y, Mi G B, Li P J 2024 Acta. Phys. Sin. 73 086103Google Scholar

    [4]

    丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍 2022 物理学报 71 028102Google Scholar

    Ding Z S, Gao W, Wei J P, Jin Y H, Zhao C, Yang W 2022 Acta. Phys. Sin. 71 028102Google Scholar

    [5]

    Robertson I M, Sofronis P, Nagao A 2015 Metall. Mater. Trans. A 46 2323Google Scholar

    [6]

    Venezuela J, Zhou Q J, Liu Q L 2018 Mater. Today Commun. 17 1Google Scholar

    [7]

    Olden V, Thaulow C, Johnsen R 2008 Mater. Des. 29 1934Google Scholar

    [8]

    Lynch S P 2007 NACE International Corrosion Conference Nashville, Tennessee, March, 2007 p07493

    [9]

    Wang X, Zhu R T, Li C Y, Wang X, Huang P F 2020 Rare Met. Mater. Eng. 49 3769

    [10]

    Zhang S Q, Wan J F, Zhao Q Y 2020 Corros. Sci 164 108345Google Scholar

    [11]

    Xu Y L, Li L T 2021 Mater. Res. Express 8 046531Google Scholar

    [12]

    汪洋, 吴冰, 宿彦京, 邢焰, 王向轲, 高鸿, 李岩 2020 有色金属工程 10 33Google Scholar

    Wang Y, Wu B, Su Y J, Xing Y, Wang X K, Gao H, Li Y 2020 Nonferrous Met. Eng. 10 33Google Scholar

    [13]

    Sun Z G, Hou H L 2008 J. Alloys Compd. 476 550Google Scholar

    [14]

    Liu X Y, Wang J, Gao L Q 2021 J. Alloys Compd. 862 158669Google Scholar

    [15]

    Tien J, Thompson A W, Bernstein I M 1976 Metall. Trans. A 7 821Google Scholar

    [16]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [17]

    周伟, 姚泽坤, 谭立军, 郭鸿镇, 张建伟, 梁晓波 2011 稀有金属材料与工程 40 1230

    Zhou W, Yao Z K, Tan L J, Guo H Z, Zhang J W, Liang X B 2011 Rare Met. Mater. Eng. 40 1230

    [18]

    赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚 2018 金属学报 54 1031Google Scholar

    Zhao X L, Zhang Y J, Shao C W, Hui W J, Dong H 2018 Acta Metall. Sin. 54 1031Google Scholar

    [19]

    张滨, 郑华, 刘实, 王隆保 2005 原子能科学技术 39 522Google Scholar

    Zhang B, Zheng H, Liu S, Wang L B 2005 At. Energy Sci. Technol. 39 522Google Scholar

    [20]

    Chen C Q, Li S X, Lu K 2003 Acta Mater. 51 931Google Scholar

    [21]

    王艳飞, 巩建鸣, 蒋文春, 姜勇, 唐建群 2011 金属学报 47 594

    Wang Y F, Gong J M, Jiang W C, Jiang Y, Tang J Q 2011 Acta Metall. Sin. 47 594

    [22]

    刘战伟 2009 桂林电子科技大学学报 29 108Google Scholar

    Liu Z W 2009 J. Guilin Univ. Electron. Technol. 29 108Google Scholar

    [23]

    孙志杰, 王洋 2020 材料开发与应用 35 94

    Sun Z J, Wang Y 2020 Dev. Appl. Mater. 35 94

    [24]

    刘晓镇, 韩恩厚, 宋影伟 2023 中国有色金属学报 33 307Google Scholar

    Liu X Z, Han E H, Song Y W 2023 Chin. J. Nonferrous Met. 33 307Google Scholar

    [25]

    王秀英, 孙力玲, 刘日平, 姚玉书, 张君, 王文魁 2004 物理学报 53 3845Google Scholar

    Wang X Y, Sun L L, Liu R P, Yao Y S, Zhang J, Wang W K 2004 Acta Phys. Sin. 53 3845Google Scholar

    [26]

    孙永伟, 陈继志, 刘军 2015 金属学报 51 1315

    Sun Y W, Chen J Z, Liu J 2015 Acta Metall. Sin. 51 1315

    [27]

    李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明 2014 物理学报 63 236101Google Scholar

    Li H J, Sun G A, Gong J, Chen B, Wang H, Li J, Pang B B, Zhang Y, Peng S M 2014 Acta Phys. Sin. 63 236101Google Scholar

    [28]

    Kan B, Wu W J, Yang Z X, Li J X 2020 Mater. Sci. Eng. A 775 138963Google Scholar

    [29]

    Wang M Q, Akiyama E, Tsuzaki K 2007 Corros. Sci. 49 4081Google Scholar

    [30]

    王贞, 刘静, 张施琦, 黄峰 2022 中国腐蚀与防护学报 42 106Google Scholar

    Wang Z, Liu J, Zhang S Q, Huang F 2022 J. Chin. Soc. Corros. Prot. 42 106Google Scholar

  • [1] Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao. Structure and stability of possible new L i-Y-H ternary hydrides. Acta Physica Sinica, 2022, 71(1): 017401. doi: 10.7498/aps.71.20210824
    [2] LI Ming,  JIN Pinshi,  CAO Xun. Current Research on Rare Earth Oxygenated Hydride Photochromic Films. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [3] Li Ming, Jin Ping-Shi, Cao Xun. Current research status of rare earth oxygenated hydride photochromic films. Acta Physica Sinica, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [4] Ding Zhi-Song, Gao Wei, Wei Jing-Peng, Jin Yao-Hua, Zhao Chen, Yang Wei. Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy. Acta Physica Sinica, 2022, 71(2): 028102. doi: 10.7498/aps.71.20210835
    [5] Effect of TaC microparticles on structure and properties of micro- arc oxidation coating on Ti-6Al-4V alloy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210835
    [6] Liang Xian-Ye, Mi Guang-Bao, Li Pei-Jie, Huang Xu, Cao Chun-Xiao. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Physica Sinica, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [7] Li Shou-Ying, Zhao Wei-Min, Qiao Jian-Hua, Wang Yong. Competitive adsorption of CO and H2 on strained Fe(110) surface. Acta Physica Sinica, 2019, 68(21): 217103. doi: 10.7498/aps.68.20190660
    [8] Zhang Li-Li, Liu Zhan-Hui, Xiu Xiang-Qian, Zhang Rong, Xie Zi-Li. Optimization of the parameters for growth high-qulity GaN film by hydride vapor phase epitaxy. Acta Physica Sinica, 2013, 62(20): 208101. doi: 10.7498/aps.62.208101
    [9] Wang Xiao-Lu, Linghu Rong-Feng, Song Xiao-Shu, Lü Bing, Yang Xiang-Dong. Interactional potential of helium atom and hydrogen halide molecules. Acta Physica Sinica, 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [10] Xue Li, Yi Lin. Influence of Al doping on stability of Mg1-xTix and their hydrides. Acta Physica Sinica, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [11] Wu Dong-Lan, Xie An-Dong, Wan Hui-Jun, Ruan Wen. Study on geometrical structure and spectrum ofpolymerization borohydride (BH3)n(n=13). Acta Physica Sinica, 2011, 60(10): 103101. doi: 10.7498/aps.60.103101
    [12] Tang Yuan-Guang, Wu Han-Hua, Chang Hong, Chen Gen-Yu, Sang Yong, Bai Yi-Zhen. Effects of cathodic voltage pulse duty cycle on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [13] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [14] Wu Han-Hua, Long Bei-Hong, Long Bei-Yu, Tang Yuan-Guang, Chang Hong, Bai Yi-Zhen. Characteristics of electrical parameters during microarc oxidation of titanium alloys. Acta Physica Sinica, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [15] Lu Guang-Hui, Sun Wei-Guo, Feng Hao. Studies on the potential energy curves of hydride diatomic molecules using energy consistent method. Acta Physica Sinica, 2004, 53(6): 1753-1758. doi: 10.7498/aps.53.1753
    [16] ZHONG XIA-PING, DENG WEN, TANG YU-SHENG, XIONG LIANG-YUE, WANG SHU-HE, GUO JIAN-TING, LONG QI-WEI. THE MICROSCOPIC MECHANISM OF ALLOYING ELEMENTS AFFECTING THE DUCTILITY OR BRITTLENESS OF FeAl INTERMETALLICS. Acta Physica Sinica, 1998, 47(10): 1734-1740. doi: 10.7498/aps.47.1734
    [17] CAO MING-ZHONG, WANG FU-TUAN, WANG GEN-SHI, SONG DE-YING, CHEN GUI-YING, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING SPECTRA OF LaNi4.5Mn0.5Hx. Acta Physica Sinica, 1985, 34(5): 689-693. doi: 10.7498/aps.34.689
    [18] DU JIA-JU. A INTERNAL FRICTION PEAK DUE TO TRACE HYDROGEN IN H.C.P. LATTICE α-PHASE OF TITANIUM ALLOYS. Acta Physica Sinica, 1982, 31(6): 801-806. doi: 10.7498/aps.31.801
    [19] RUAN JING-HUI, CHENG ZHI-XU, CHEN GUI-YING. INELASTIC SCATTERING SPECTRA OF THERMAL NEUTRONS BY ALUMINIUM HYDRIDE (AlH3)n. Acta Physica Sinica, 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [20] ЗABиCиMOCTb HAЛPЯЖEHиЯ CЛдABA Al-Cu OT CKOPOCTи ДEФOPMиPOBAHиЯ. Acta Physica Sinica, 1964, 20(8): 796-805. doi: 10.7498/aps.20.796
Metrics
  • Abstract views:  654
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2024
  • Accepted Date:  08 September 2024
  • Available Online:  27 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回