Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries

Zhang Ni-Ni Ren Juan Luo Lan-Xi Liu Ping-Ping

Citation:

First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries

Zhang Ni-Ni, Ren Juan, Luo Lan-Xi, Liu Ping-Ping
cstr: 32037.14.aps.73.20240996
PDF
HTML
Get Citation
  • The performances of beryllium-doped graphdiyne (GDY), which is used as an anode material for lithium-ion batteries at various doping sites, are investigated by first-principles methods based on density functional theory. Calculations of the formation energy and cohesive energy of GDY at different doping concentrations indicate that beryllium-doped GDY has excellent prospects for experimental synthesis. More importantly, the beryllium-doped GDY exhibits good electrical conductivity. The adsorption energy for a single lithium atom on beryllium-doped GDY is –4.22 eV, which is significantly higher than that for boron, nitrogen-doped GDY, and intrinsic GDY. As the number of stored lithium atoms increases, the adsorption energy remains greater than the cohesive energy of solid lithium, and the average open-circuit voltage stays between 0 and 1 V, ensuring the safety of the battery. Additionally, the lithium storage capacity is increased to 881 mAh/g, which is 1.14 times that of undoped GDY and 2.36 times that of graphite. Meanwhile, the diffusion performance of lithium on beryllium-doped GDY is also enhanced. For the CIII site doping system, by studying the ion transports at low, medium, and high lithium concentrations, we find that as the lithium concentration increases, the diffusion barriers are 0.38, 0.44, and 0.77 eV, respectively, making lithium ion movement more difficult, but still superior to those of other element-doped GDY. In summary, beryllium-doped GDY has great potential as an excellent anode material for lithium-ion batteries.
      Corresponding author: Ren Juan, renjuan@xatu.edu.cn
    • Funds: Project supported by the Science and Technology Planning Project of Xi’an, China (Grant No. 21XKJZZ0029N) and the Innovation Capability Support Plan-Science and Technology Innovation Team Project of Shaanxi Province, China (Grant No. 2024RS-CXTD-13).
    [1]

    Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2008 Nano Lett. 8 2277Google Scholar

    [4]

    Liu X, Wang C Z, Yao Y X, Lu W C, Hupalo M, Tringides M C, Ho K M 2011 Phys. Rev. B 83 235411Google Scholar

    [5]

    Li W, He Y H, Wang L, Ding G H, Zhang Z Q, Lortz R W, Sheng P, Wang N 2011 Phys. Rev. B 84 045431.Google Scholar

    [6]

    Liu X, Hupalo M, Wang C Z, Lu W C, Tringides M C 2012 Phys. Rev. B 86 081414Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Zhang H Y, Xia Y Y, Bu H X, Wang X P, Zhang M, Zhao L X, Luo T H, Zhao M W 2013 J. Appl. Phys. 113 044309Google Scholar

    [11]

    He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L 2017 Nat. Commun. 8 1172Google Scholar

    [12]

    Urbain F, Smirnov V, Becker J P, et al. 2016 Energ. Environ. Sci. 9 145Google Scholar

    [13]

    Wang N, He J J, Tu Z Y, Yang Z, Zhao F H, Li X D, Huang C D, Wang K, Jiu T G, Yi Y P, Li Y L 2017 Angew. Chem. Int. Edit. 56 10740Google Scholar

    [14]

    Shen X Y, Li X D, Zhao F H, Wang N, Xie C P, He J J, Si W Y, Yi Y Y, Yang Z, Li X F, Lu F S, Huang C S 2019 2D Materials 6 035020Google Scholar

    [15]

    曾雯2020 硕士学位论文 (重庆: 重庆大学)

    Zeng W 2020 M. S. Thesis (Chongqing: Chongqing University

    [16]

    Wang N, Li X D, Tu Z Y, Zhao F H, He J J, Guan Z Y, Huang C D, Yi Y P, Li Y L 2018 Angew. Chem. Int. Edit. 57 3968Google Scholar

    [17]

    Yang Z, Liu R R, Wang N, He J J, Wang K, Li X D, Shen X Y, Wang X, Lv Q, Zhang M J, Luo J, Jiu T G, Hou Z F, Huang C S 2018 Carbon 137 442Google Scholar

    [18]

    Yang Z, Shen X Y, Wang N, He J J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S 2019 ACS Appl. Mater. Interfaces 11 2608Google Scholar

    [19]

    Hussain A, Ullah S, Farhan M A 2016 RSC Adv. 6 55990Google Scholar

    [20]

    Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaertse O, Karimf A 2015 RSC Adv. 5 55762Google Scholar

    [21]

    Kost F, Linsmeier Ch, Oberkofler M, Reinelt M, Balden M, Herrmann A, Lindig S 2009 J. Nucl. Mater. 390–391 975Google Scholar

    [22]

    Goldstraß P, Linsmeier C 2000 Nucl. Instrum. Meth. B 161–163 411Google Scholar

    [23]

    Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C, Roth J 2011 J. Nucl. Mater. 416 9Google Scholar

    [24]

    Ferro Y, Allouche A, Linsmeier C 2013 J. Appl. Phys. 113 213514Google Scholar

    [25]

    Campbell A, Cakmak E, Henry B, et al. 2023 Be 2C Synthesis, Properties, and Ion-beam Irradiation Damage Characterization ORNL/TM-2023/3011

    [26]

    López-Urías F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [28]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [29]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [32]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [33]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [34]

    Zheng F C, Yang Y, Chen Q W 2014 Nat. Commun. 5 5261Google Scholar

    [35]

    Eftekhari A 2017 Energy Storage Mater. 7 157Google Scholar

    [36]

    蔡梦圆, 唐春梅, 张秋月 2019 物理学报 68 213601Google Scholar

    Cai M Y, Tang C M, Zhang Q Y 2019 Acta Phys. Sin. 68 213601Google Scholar

    [37]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

  • 图 1  (a) 石墨双炔几何结构, Be原子的3个不同掺杂位CI, CII及CIII; (b) 本征石墨双炔的能带结构及态密度

    Figure 1.  (a) Geometric structure of graphdiyne, with three different replacement sites for Be atoms: CI, CII, and CIII; (b) the band structure and density of states of the intrinsic graphdiyne.

    图 2  掺杂位与邻近碳原子之间的键长 (a) CI位; (b) CII位; (c) CIII位; (d) 本征石墨双炔

    Figure 2.  Bond lengths between doping sites and adjacent carbon atoms: (a) CI site; (b) CII site; (c) CIII site; (d) intrinsic graphdiyne.

    图 3  掺杂浓度分别为(a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%的CI位掺杂体系弛豫后的几何结构; 掺杂浓度分别为(e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%的CII位掺杂体系弛豫后的几何结构; 掺杂浓度分别为(i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%的CIII位掺杂体系弛豫后的几何结构

    Figure 3.  Relaxed geometric structures of the CI site doping systems with doping concentrations of (a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%; relaxed geometric structures of the CII site doping systems with doping concentrations of (e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%; relaxed geometric structures of the CIII site doping systems with doping concentrations of (i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%.

    图 4  不同掺杂位点Be与相邻C原子的结构(上图)和PDOS图(下图) (a), (b) CI位; (c), (d) CII位; (e), (f) CIII

    Figure 4.  Structure (upper panel) and PDOS diagram (lower panel) of different doping sites Be and adjacent C atoms: (a), (b) CI site; (c), (d) CII site; (e), (f) CIII site.

    图 5  掺杂浓度为5.56%体系的分子动力学结果及在300 K弛豫5 ps后的结构 (a), (d) CI位; (b), (e) CII位; (c), (f) CIII

    Figure 5.  Molecular dynamics results of a system with a 5.56% doping concentration and the structure after 5 ps of relaxation at 300 K: (a), (d) CI site; (b), (e) CII site; (c), (f) CIII site.

    图 6  掺杂浓度分别为(a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%的CI位替换掺杂的能带结构; 掺杂浓度分别为(e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%的CII位替换掺杂的能带结构; 掺杂浓度分别为(i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%的CIII位替换掺杂的能带结构

    Figure 6.  Band structure of CI site replacement doping with doping concentrations of (a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%; the band structure of CII site replacement doping with doping concentrations of (e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%; the band structure of CIII site replacement doping with doping concentrations of (i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%.

    图 7  Be掺杂石墨双炔的静电势图  (a) CI位; (b) CII位; (c) CIII位; (d)本征GDY(静电势的等值面0.0009 |e|/Å3)

    Figure 7.  Electrostatic potential maps of graphdiyne doped with Be at different sites: (a) CI site; (b) CII site; (c) CIII site; (d) intrinsic graphdiyne (the isosurface of the electrostatic potential is 0.0009 |e|/Å3).

    图 8  单个Li在CI位掺杂的稳定吸附位的(a) 俯视图和(b) 侧视图; 在CII位掺杂的稳定吸附位的(c) 俯视图和(d) 侧视图; 在CIII位掺杂的稳定吸附位的(e) 俯视图和(f) 侧视图

    Figure 8.  (a) Top view and (b) side view of stable adsorption sites of a single Li atom at the CI site doped system; (c) top view and (d) side view at the CII site doped system; (e) top view and (f) side view at the CIII site doped system.

    图 9  Li吸附在不同原子掺杂石墨双炔及本征石墨双炔吸附能比较 (a) 在CI位掺杂原子; (b) CII位掺杂原子; (c) CIII位掺杂原子

    Figure 9.  Comparison of adsorption energy of Li adsorption on different atoms doped graphdiyne and intrinsic graphdiyne: (a) Doping atoms at the CI site; (b) CII site doping atoms; (c) CIII site doping atoms.

    图 10  差分电荷密度图的(a), (c), (e)俯视图和(b), (d), (f)侧视图 (a), (b) Li吸附在CI位掺杂体系; (c), (d) Li吸附在CII位掺杂体系; (e), (f) Li吸附在CIII位掺杂体系(等值面为0.011 |e|/Å3)

    Figure 10.  (a), (c), (e) Top view and (b), (d), (f) side view of the different charge density: (a), (b) the adsorption of Li atom on the CI doped system; (c), (d) the adsorption of Li atom on CII doped system; (e), (f) the adsorption of Li atom on CIII doped system (isosurface = 0.011 |e|/Å3).

    图 11  Li在Be掺杂石墨双炔上的平均吸附能随储Li数量的变化

    Figure 11.  Average adsorption energy of Li on Be-doped graphdiyne with the number of stored Li.

    图 12  最大吸附Li容量结构图 (a) CI位替换掺杂; (b) CII位替换掺杂; (c) CIII位替换掺杂

    Figure 12.  Maximum adsorption Li capacity structure: (a) CI site doping; (b) CII site doping; (c) CIII site doping.

    图 13  Be掺杂石墨双炔的开路电压随储Li容量的变化

    Figure 13.  Change of open circuit voltage (OCV) of Be doped graphdiyne with storage Li capacity.

    图 14  (a)—(c) Be掺杂石墨双炔最大Li容量的分子动力学结果以及(d)—(f)在300 K弛豫5 ps后的结构 (a), (d) CI位; (b), (e) CII位; (c), (f) CIII

    Figure 14.  (a)–(c) Molecular dynamics results of the maximum Li capacities of Be doped graphdiyne and (d)–(f) the structure after 5 ps of relaxation at 300 K: (a), (d) CI site; (b), (e) CII site; (c), (f) CIII site.

    图 15  Li在Be掺杂石墨双炔上的扩散路径(第1和第3行)和对应的能量曲线图(第2和第4行) (a)—(d) CI位替换掺杂; (e)—(h) CII位替换掺杂; (i)—(l) CIII位替换掺杂

    Figure 15.  Diffusion path (the first and the third rows) and corresponding energy curve (the second and the fourth rows) of Li on Be doped graphdiyne: (a)–(d) CI site doping; (e)–(h) CII site doping; (i)–(l) CIII site doping.

    图 16  Li在本征石墨双炔上的扩散路径和对应的能量曲线图 (a) 扩散路径一; (b) 路径一对应的势垒; (c) 扩散路径二; (d) 路径二对应的势垒

    Figure 16.  Li diffusion path on intrinsic graphdiyne and the corresponding energy curve: (a) Diffusion path I; (b) path I corresponding barrier; (c) diffusion path II; (d) path II corresponding barrier.

    图 17  Li吸附在不同原子掺杂石墨双炔及本征石墨双炔扩散势垒比较 (a) CI位掺杂; (b) CIII位掺杂

    Figure 17.  Comparison of Li adsorption on different atoms doped graphdiyne and intrinsic graphdiyne diffusion barriers: (a) CI site doping; (b) CIII site doping.

    图 18  中锂高锂浓度的扩散路径和对应的能量曲线图 (a) 中锂扩散路径; (b) 中锂对应的势垒; (c) 高锂扩散路径; (d) 高锂对应的势垒

    Figure 18.  Diffusion path and corresponding energy profiles for the medium-high lithium concentration: (a) Medium lithium diffusion path; (b) the barrier corresponding to the medium lithium; (c) high lithium diffusion path; (d) the barrier corresponding to the high lithium level.

    表 1  CI, CII, CIII位掺杂不同浓度的Be原子构型形成能(单位: eV)

    Table 1.  Formation energies of Be atoms at different concentrations of CI, CII, CIII sites doping (unit: eV).

    掺杂位替换1个Be(1.39%)替换2个Be(2.78%)替换3个Be(4.17%)替换4个Be(5.56%)
    CI1.280.790.790.63
    CII0.830.360.400.25
    CIII1.040.800.810.66
    DownLoad: CSV

    表 2  不同掺杂浓度下内聚能(单位: eV)

    Table 2.  Cohesive energy at different doping concentrations (unit: eV).

    掺杂位 替换1个Be(1.39%) 替换2个Be(2.78%) 替换3个Be(4.17%) 替换4个Be(5.56%)
    CI –7.816 –7.729 –7.636 –7.552
    CII –7.822 –7.741 –7.652 –7.572
    CIII –7.819 –7.729 –7.635 –7.550
    DownLoad: CSV
  • [1]

    Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2008 Nano Lett. 8 2277Google Scholar

    [4]

    Liu X, Wang C Z, Yao Y X, Lu W C, Hupalo M, Tringides M C, Ho K M 2011 Phys. Rev. B 83 235411Google Scholar

    [5]

    Li W, He Y H, Wang L, Ding G H, Zhang Z Q, Lortz R W, Sheng P, Wang N 2011 Phys. Rev. B 84 045431.Google Scholar

    [6]

    Liu X, Hupalo M, Wang C Z, Lu W C, Tringides M C 2012 Phys. Rev. B 86 081414Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Zhang H Y, Xia Y Y, Bu H X, Wang X P, Zhang M, Zhao L X, Luo T H, Zhao M W 2013 J. Appl. Phys. 113 044309Google Scholar

    [11]

    He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L 2017 Nat. Commun. 8 1172Google Scholar

    [12]

    Urbain F, Smirnov V, Becker J P, et al. 2016 Energ. Environ. Sci. 9 145Google Scholar

    [13]

    Wang N, He J J, Tu Z Y, Yang Z, Zhao F H, Li X D, Huang C D, Wang K, Jiu T G, Yi Y P, Li Y L 2017 Angew. Chem. Int. Edit. 56 10740Google Scholar

    [14]

    Shen X Y, Li X D, Zhao F H, Wang N, Xie C P, He J J, Si W Y, Yi Y Y, Yang Z, Li X F, Lu F S, Huang C S 2019 2D Materials 6 035020Google Scholar

    [15]

    曾雯2020 硕士学位论文 (重庆: 重庆大学)

    Zeng W 2020 M. S. Thesis (Chongqing: Chongqing University

    [16]

    Wang N, Li X D, Tu Z Y, Zhao F H, He J J, Guan Z Y, Huang C D, Yi Y P, Li Y L 2018 Angew. Chem. Int. Edit. 57 3968Google Scholar

    [17]

    Yang Z, Liu R R, Wang N, He J J, Wang K, Li X D, Shen X Y, Wang X, Lv Q, Zhang M J, Luo J, Jiu T G, Hou Z F, Huang C S 2018 Carbon 137 442Google Scholar

    [18]

    Yang Z, Shen X Y, Wang N, He J J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S 2019 ACS Appl. Mater. Interfaces 11 2608Google Scholar

    [19]

    Hussain A, Ullah S, Farhan M A 2016 RSC Adv. 6 55990Google Scholar

    [20]

    Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaertse O, Karimf A 2015 RSC Adv. 5 55762Google Scholar

    [21]

    Kost F, Linsmeier Ch, Oberkofler M, Reinelt M, Balden M, Herrmann A, Lindig S 2009 J. Nucl. Mater. 390–391 975Google Scholar

    [22]

    Goldstraß P, Linsmeier C 2000 Nucl. Instrum. Meth. B 161–163 411Google Scholar

    [23]

    Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C, Roth J 2011 J. Nucl. Mater. 416 9Google Scholar

    [24]

    Ferro Y, Allouche A, Linsmeier C 2013 J. Appl. Phys. 113 213514Google Scholar

    [25]

    Campbell A, Cakmak E, Henry B, et al. 2023 Be 2C Synthesis, Properties, and Ion-beam Irradiation Damage Characterization ORNL/TM-2023/3011

    [26]

    López-Urías F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [28]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [29]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [32]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [33]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [34]

    Zheng F C, Yang Y, Chen Q W 2014 Nat. Commun. 5 5261Google Scholar

    [35]

    Eftekhari A 2017 Energy Storage Mater. 7 157Google Scholar

    [36]

    蔡梦圆, 唐春梅, 张秋月 2019 物理学报 68 213601Google Scholar

    Cai M Y, Tang C M, Zhang Q Y 2019 Acta Phys. Sin. 68 213601Google Scholar

    [37]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

  • [1] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [2] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [3] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [5] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [7] Pang Hui. An extended single particle model-based parameter identification scheme for lithium-ion cells. Acta Physica Sinica, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [8] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin, Li Yong. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Physica Sinica, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] Huang Liang, Li Jian-Yuan. Modeling and failure monitor of Li-ion battery based on single particle model and partial difference equations. Acta Physica Sinica, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [11] Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying. Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery. Acta Physica Sinica, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [12] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] Dou Jun-Qing, Kang Xue-Ya, Tuerdi Wumair, Hua Ning, Han Ying. The first principles and experimental study on Mn-doped LiFePO4. Acta Physica Sinica, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [18] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [19] Li Jia, Yang Chuan-Zheng, Zhang Xi-Gui, Zhang Jian, Xia Bao-Jia. XRD studies on the electrode materials in the charge-discharge process of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 battery. Acta Physica Sinica, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [20] Hou Zhu-Feng, Liu Hui-Ying, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. Investigation of lithium insertion in anode material CuSn for lithium-ion batteries. Acta Physica Sinica, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
Metrics
  • Abstract views:  480
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2024
  • Accepted Date:  06 September 2024
  • Available Online:  25 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回