Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness

Li Yang Zhang Yan-Hong Sheng Liang Zhang Mei Yao Zhi-Ming Duan Bao-Jun Zhao Ji-Zhen Guo Quan Yan Wei-Peng Li Guo-Guang Hu Jia-Qi Li Hao-Qing Li Lang-Lang

Citation:

Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness

Li Yang, Zhang Yan-Hong, Sheng Liang, Zhang Mei, Yao Zhi-Ming, Duan Bao-Jun, Zhao Ji-Zhen, Guo Quan, Yan Wei-Peng, Li Guo-Guang, Hu Jia-Qi, Li Hao-Qing, Li Lang-Lang
cstr: 32037.14.aps.73.20241198
PDF
HTML
Get Citation
  • In the measurement of pulsed neutrons in the MeV energy range, plastic scintillators are one of the most widely used materials, and their neutron energy spectrum responses are key data of pulsed neutron energy spectrum measurement. The neutron energy spectrum responses of ST401 plastic scintillators with 5 different thickness values ranging from 0.5 to 10 mm in an energy range from 0.5 MeV to 100 MeV are measured by using the time-of-flight (TOF) method on the white neutron source (WNS) beamline of the China Spallation Neutron Source (CSNS). The effects of in-beam gamma rays, the gamma flash produced slow component of scintillator, and the pulse width of the neutron source on the measurement of neutron spectrum response are analyzed. Owing to the boundary effect of the finite volume of the scintillator, the neutron energy spectrum response curves of ST401 with different thickness values present approximately logarithmic shape, and proton escape is the main reason for the deviation of the curve from linearity. The thicker the scintillator, the higher the neutron energy deviates from linearity.
      Corresponding author: Sheng Liang, shengliang@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175183 ) and the Distinguished Youth Science Fund of National Defense Science and Technology of China (Grant No. JQZQ021901).
    [1]

    刘兆庆 1994 脉冲辐射场诊断技术 (北京: 科学出版社)第12页

    Liu Z Q, 1994 Pulse Radiation Field Diagnostic Technology (Beijing: Science Press) p12

    [2]

    易义成, 宋朝晖, 管兴胤, 韩和同, 卢毅, 郝帅 2023 现代应用物理 14 10202Google Scholar

    Yi Y C, Song Z H, Guan X Y, Han H T, Lu Y, Hao S 2023 Mod. Appl. Phys. 14 10202Google Scholar

    [3]

    杨洪琼, 彭太平, 杨建伦, 唐正元, 杨高照, 李林波, 胡孟春, 王振通, 张建华, 李忠宝, 王立宗 2004 核电子学与探测技术 24 640

    Yang H Q, Peng T P, Yang J L, Tang Z Y, Yang G Z, Li L B, Hu M C, Wang Z T, Zhang J H, Li Z B, Wang L Z 2004, Nucl. Electron. & Detect. Technol. 24 640

    [4]

    姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 物理学报 66 062401Google Scholar

    Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar

    [5]

    Verbinski V V, Burrus W R, Love T A, Zobel W, Hill N W, Textor R 1968 Nucl. Instrum. Methods 65 8Google Scholar

    [6]

    张国光, 欧阳晓平, 张建福, 王志强, 张忠兵, 马彦良, 张显鹏, 陈军, 张小东, 潘洪波, 骆海龙, 刘毅娜 2006 物理学报 55 2165Google Scholar

    Zhang G G, Ouyang X P, Zhang J F, Wang Z Q, Zhang Z B, Ma Y L, Zhang X P, Chen J, Zhang X D, Pan H B, Luo H L, Liu Y N 2006 Acta Phys. Sin. 55 2165Google Scholar

    [7]

    Madey R, Waterman F M, Baldwin A R, Knudson J N, Carlson J D, Rapaport J 1978 Nucl. Instrum. Methods 151 445Google Scholar

    [8]

    张传飞, 彭太平, 罗小兵, 李如荣, 张建华, 夏宜君, 杨志华, 林理彬 2002 四川大学学报(自然科学版) 39 487

    Zhang C F, Peng T P, Luo X B, Li R R, Zhang J H, Xia Y J, Yang Z H, Lin L B 2002 J. Sichuan Univ. (Nat. Sci. Ed. ) 39 487

    [9]

    彭太平, 罗小兵, 张传飞, 李如荣, 张建华, 夏宜君, 杨志华 2002 原子核物理评论 19 357Google Scholar

    Peng T P, Luo X B, Zhang C F, Li R R, Zhang J H, Xia Y J, Yang Z H 2002 Nucl. Phys. Rev. 19 357Google Scholar

    [10]

    罗小兵, 张传飞, 彭太平, 李如荣, 张建华, 夏宜军, 杨志华 2004 核电子学与探测技术 24 186

    Luo X B, Zhang C F, Peng T P, Li R R, Zhang J H, Xia Y J, Yang Z H 2004 Nucl. Electron. & Detect. Technol. 24 186

    [11]

    宋顾周, 谢红卫, 王奎禄, 朱宏权 2008 核电子学与探测技术 28 845Google Scholar

    Song G Z, Xie H W, Wang K L, Zhu H Q 2008 Nucl. Electron. Detect. Technol. 28 845Google Scholar

    [12]

    杨建伦, 彭先觉, 杨洪琼, 杨高照, 王立宗, 钟耀华 2004 核电子学与探测技术 24 346Google Scholar

    Yang J L, Peng X J, Yang H Q, Yang G Z, Wang L Z, Zhong Y H 2004 Nucl. Electron. Detect. Technol. 24 346Google Scholar

    [13]

    Edelstein R M, Russ J S, Thatcher R C, Elfield M, Miller E L, Reay N W, Stanton N R, Abolins M A, Lin M T, Edwards K W, Gill D R 1972 Nucl. Instrum. Methods 100 355Google Scholar

    [14]

    Betti G, Guerra A D, Giazotto A, Giorgi M A, Stefanini A, Botterill D R, Braben D W, Clarke D, Norton P R 1976 Nucl. Instrum. Methods 135 129

    [15]

    Cecil R A, Anderson B D, Madey R 1979 Nucl. Instrum. Methods 161 439Google Scholar

    [16]

    Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instrum. Meth. A 600 10Google Scholar

    [17]

    Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 145Google Scholar

    [18]

    任杰, 阮锡超, 陈永浩 等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [19]

    袁秀丽, 姚岁劳, 王丹妮, 阎珍德, 唐兆荣, 蒋李君, 高兴兵, 殷生华, 贾景光, 张志雄, 林德雨2024 GB/T13181-2024(北京: 中国标准出版社)

    Yuan X L, Yao S L, Wang D N, Yan Z D, Tang Z R, Jiang L J, Gao X B, Yin S H, Jia J G, Zhang Z X, Lin D Y 2024 GB/T13181-2024 (Beijing: China Standard Press

    [20]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社)

    Ji C S 1990 Handbook of Nuclear Radiation Detectors & Their Experiment Techniques (Beijing: Atomic Energy Press

    [21]

    http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html/ [2024-8-30]

    [22]

    Gohil M, Banerjee K, Bhattacharya S, Bhattacharya C, Kundu S, Rana T K , Mukherjee G, Meena J K, Pandey R, Pai H, Ghosh T K, Dey A, Mukhopadhyay S, Pandit D, Pal S, Banerjee S R, Bandhopadhyay T 2012 Nucl. Instrum. Meth. A 664 304

    [23]

    杨洋, 党同强, 王志刚, 王明煌, 杨战国, 常博, 宋勇, 周涛 2024 现代应用物理 15 10201Google Scholar

    Yang Y, Dang T Q, Wang Z G, Wang M H, Yang Z G, Chang B, Song Y, Zhou T 2024 Mod. Appl. Phys. 15 10201Google Scholar

    [24]

    秋妍妍, 谭志新, 易晗, 贺永宁, 赵小龙, 樊瑞睿 2023 现代应用物理 14 30203

    Qiu Y Y, Tan Z X, Yi H, He Y N, Zhao X L, Fan R R 2023 Mod. Appl. Phys. 14 30203

  • 图 1  闪烁体中子能谱响应测量布局示意图

    Figure 1.  Sketch of measuring the neutron spectrum response of a scintillator on WNS of CSNS.

    图 2  闪烁体能谱响应测量波形

    Figure 2.  Typical waveforms measured in our experiments.

    图 3  束内伽马对塑料闪烁体中子能谱响应测量的影响

    Figure 3.  Influence of in-beam gamma on plastic scintillators’ neutron spectrum response measurements.

    图 4  ST401闪烁体慢成分测量结果

    Figure 4.  Measured slow component of a ST401 scintillator.

    图 5  伽马峰后不同时刻到达闪烁体处中子能谱 (a)伽马峰后1268.7 ns; (b) 伽马峰后1890.4 ns; (c) 伽马峰后3326.2 ns; (d) 伽马峰后5404.3 ns

    Figure 5.  The neutron spectrum at the scintillator at different time intervals after the γ flash peak: (a) 1268.7 ns; (b) 1890.4 ns; (c) 3326.2 ns; (d) 5404.3 ns.

    图 6  白光中子源能谱 (0.5—200 MeV)

    Figure 6.  The neutron spectrum of WNS (0.5–200 MeV).

    图 7  不同厚度塑料ST401中子能谱响应 (a) 线性坐标; (b) 对数坐标

    Figure 7.  The neutron spectrum responses of ST401 scintillators with different thicknesses: (a) Linear coordinates; (b) logarithmic coordinates.

    图 8  中子能量0.01—100 MeV的n-p和n-C作用截面曲线

    Figure 8.  n-p and n-C cross sections from 0.01 to 100 MeV.

    图 9  塑料闪烁体对不同种类粒子的光响应函数

    Figure 9.  Light response function of plastic scintillators to different particles.

    图 10  0.01—100 MeV质子(中子)在塑料闪烁体中的平均射程(迁移长度) (a) 对数坐标; (b) (a)图中蓝色虚线方框内曲线在线性坐标下的放大展示

    Figure 10.  The average range (migration length) of 0.01–100 MeV protons (neutrons) in plastic scintillators: (a) Range and migration length in logarithmic coordinates; (b) enlargement of the curves in the blue square in (a).

    图 11  10, 5, 2和1 mm与0.5 mm塑料闪烁体中子灵敏度的比值

    Figure 11.  The ratios of 10, 5, 2 and 1 mm-thick plastic scintillators’ neutron sensitivities to 0.5 mm.

  • [1]

    刘兆庆 1994 脉冲辐射场诊断技术 (北京: 科学出版社)第12页

    Liu Z Q, 1994 Pulse Radiation Field Diagnostic Technology (Beijing: Science Press) p12

    [2]

    易义成, 宋朝晖, 管兴胤, 韩和同, 卢毅, 郝帅 2023 现代应用物理 14 10202Google Scholar

    Yi Y C, Song Z H, Guan X Y, Han H T, Lu Y, Hao S 2023 Mod. Appl. Phys. 14 10202Google Scholar

    [3]

    杨洪琼, 彭太平, 杨建伦, 唐正元, 杨高照, 李林波, 胡孟春, 王振通, 张建华, 李忠宝, 王立宗 2004 核电子学与探测技术 24 640

    Yang H Q, Peng T P, Yang J L, Tang Z Y, Yang G Z, Li L B, Hu M C, Wang Z T, Zhang J H, Li Z B, Wang L Z 2004, Nucl. Electron. & Detect. Technol. 24 640

    [4]

    姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 物理学报 66 062401Google Scholar

    Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar

    [5]

    Verbinski V V, Burrus W R, Love T A, Zobel W, Hill N W, Textor R 1968 Nucl. Instrum. Methods 65 8Google Scholar

    [6]

    张国光, 欧阳晓平, 张建福, 王志强, 张忠兵, 马彦良, 张显鹏, 陈军, 张小东, 潘洪波, 骆海龙, 刘毅娜 2006 物理学报 55 2165Google Scholar

    Zhang G G, Ouyang X P, Zhang J F, Wang Z Q, Zhang Z B, Ma Y L, Zhang X P, Chen J, Zhang X D, Pan H B, Luo H L, Liu Y N 2006 Acta Phys. Sin. 55 2165Google Scholar

    [7]

    Madey R, Waterman F M, Baldwin A R, Knudson J N, Carlson J D, Rapaport J 1978 Nucl. Instrum. Methods 151 445Google Scholar

    [8]

    张传飞, 彭太平, 罗小兵, 李如荣, 张建华, 夏宜君, 杨志华, 林理彬 2002 四川大学学报(自然科学版) 39 487

    Zhang C F, Peng T P, Luo X B, Li R R, Zhang J H, Xia Y J, Yang Z H, Lin L B 2002 J. Sichuan Univ. (Nat. Sci. Ed. ) 39 487

    [9]

    彭太平, 罗小兵, 张传飞, 李如荣, 张建华, 夏宜君, 杨志华 2002 原子核物理评论 19 357Google Scholar

    Peng T P, Luo X B, Zhang C F, Li R R, Zhang J H, Xia Y J, Yang Z H 2002 Nucl. Phys. Rev. 19 357Google Scholar

    [10]

    罗小兵, 张传飞, 彭太平, 李如荣, 张建华, 夏宜军, 杨志华 2004 核电子学与探测技术 24 186

    Luo X B, Zhang C F, Peng T P, Li R R, Zhang J H, Xia Y J, Yang Z H 2004 Nucl. Electron. & Detect. Technol. 24 186

    [11]

    宋顾周, 谢红卫, 王奎禄, 朱宏权 2008 核电子学与探测技术 28 845Google Scholar

    Song G Z, Xie H W, Wang K L, Zhu H Q 2008 Nucl. Electron. Detect. Technol. 28 845Google Scholar

    [12]

    杨建伦, 彭先觉, 杨洪琼, 杨高照, 王立宗, 钟耀华 2004 核电子学与探测技术 24 346Google Scholar

    Yang J L, Peng X J, Yang H Q, Yang G Z, Wang L Z, Zhong Y H 2004 Nucl. Electron. Detect. Technol. 24 346Google Scholar

    [13]

    Edelstein R M, Russ J S, Thatcher R C, Elfield M, Miller E L, Reay N W, Stanton N R, Abolins M A, Lin M T, Edwards K W, Gill D R 1972 Nucl. Instrum. Methods 100 355Google Scholar

    [14]

    Betti G, Guerra A D, Giazotto A, Giorgi M A, Stefanini A, Botterill D R, Braben D W, Clarke D, Norton P R 1976 Nucl. Instrum. Methods 135 129

    [15]

    Cecil R A, Anderson B D, Madey R 1979 Nucl. Instrum. Methods 161 439Google Scholar

    [16]

    Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instrum. Meth. A 600 10Google Scholar

    [17]

    Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 145Google Scholar

    [18]

    任杰, 阮锡超, 陈永浩 等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [19]

    袁秀丽, 姚岁劳, 王丹妮, 阎珍德, 唐兆荣, 蒋李君, 高兴兵, 殷生华, 贾景光, 张志雄, 林德雨2024 GB/T13181-2024(北京: 中国标准出版社)

    Yuan X L, Yao S L, Wang D N, Yan Z D, Tang Z R, Jiang L J, Gao X B, Yin S H, Jia J G, Zhang Z X, Lin D Y 2024 GB/T13181-2024 (Beijing: China Standard Press

    [20]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社)

    Ji C S 1990 Handbook of Nuclear Radiation Detectors & Their Experiment Techniques (Beijing: Atomic Energy Press

    [21]

    http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html/ [2024-8-30]

    [22]

    Gohil M, Banerjee K, Bhattacharya S, Bhattacharya C, Kundu S, Rana T K , Mukherjee G, Meena J K, Pandey R, Pai H, Ghosh T K, Dey A, Mukhopadhyay S, Pandit D, Pal S, Banerjee S R, Bandhopadhyay T 2012 Nucl. Instrum. Meth. A 664 304

    [23]

    杨洋, 党同强, 王志刚, 王明煌, 杨战国, 常博, 宋勇, 周涛 2024 现代应用物理 15 10201Google Scholar

    Yang Y, Dang T Q, Wang Z G, Wang M H, Yang Z G, Chang B, Song Y, Zhou T 2024 Mod. Appl. Phys. 15 10201Google Scholar

    [24]

    秋妍妍, 谭志新, 易晗, 贺永宁, 赵小龙, 樊瑞睿 2023 现代应用物理 14 30203

    Qiu Y Y, Tan Z X, Yi H, He Y N, Zhao X L, Fan R R 2023 Mod. Appl. Phys. 14 30203

  • [1] Dai Ting-Ting, Ding Hui-Qiang, Cheng Luan, Zhang Wei-Ning, Wang En-Ke. The Boundary Effect of s Quark Matter and Self-similarity Structure Influence of K Meson on QGP--hadron Phase Transition. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241640
    [2] WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng. Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241704
    [3] Chen Juan, Hu Wei, Lu Da-Quan. Influence of cubic nonlinearity effect on quadratic solitons in boundary-constrained self-focusing oscillatory response function system. Acta Physica Sinica, 2022, 71(21): 214205. doi: 10.7498/aps.71.20220865
    [4] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [5] Wei Kun, Hei Dong-Wei, Liu Jun, Xu Qing, Weng Xiu-Feng, Tan Xin-Jian. Theoretical analysis and experimental verification of scintillator luminescence nonlinearity based on carrier quenching model. Acta Physica Sinica, 2021, 70(24): 242901. doi: 10.7498/aps.70.20210820
    [6] Zhou Shao-Tong, Ren Xiao-Dong, Huang Xian-Bin, Xu Qiang. Soft x-ray imaging system used for Z-pinch experiments. Acta Physica Sinica, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [7] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [8] Wang Hong-Yu, Li Jun, Jin Di, Dai Hui, Gan Tian, Wu Yun. Response of the shock wave/boundary layer interaction to the plasma synthetic jet. Acta Physica Sinica, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [9] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [10] Yuan Du-Qi. Thermodynamics of trapped finite unitary Fermi gas. Acta Physica Sinica, 2016, 65(18): 180302. doi: 10.7498/aps.65.180302
    [11] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [12] Qi Jian-Min, Zhou Lin, Jiang Shi-Lun, Zhang Jian-Hua. Experimental studies on pulsed neutron sensitivity of a fusion neutron spectrometer. Acta Physica Sinica, 2013, 62(24): 245203. doi: 10.7498/aps.62.245203
    [13] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [14] Xu Miao-Hua, Li Hong-Wei, Liu Feng, Liu Bi-Cheng, Du Fei, Zhang Lu, Su Lu-Ning, Li Ying-Jun, Li Yu-Tong, Chen Jia-Er, Zhang Jie. Experimental studies of the characteristics of a real-time ion detector-plastic scintillator. Acta Physica Sinica, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [15] Su Dong, Tang Chang-Jian, Liu Pu-Kun. Boundary effect analysis of electromagnetic mode in the beam-ion channel. Acta Physica Sinica, 2007, 56(5): 2802-2807. doi: 10.7498/aps.56.2802
    [16] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [17] Zhang Guo-Guang, Ouyang Xiao-Ping, Zhang Jian-Fu, Wang Zhi-Qing, Zhang Zhong-Bing, Ma Yan-Liang, Zhang Xian-Peng, Chen Jun, Zhang Xiao-Dong, Pan Hong-Bo, Luo Hai-Long, Liu Yi-Na. The experimental investigation of the neutron energy response of the thin ST-401 scintillator. Acta Physica Sinica, 2006, 55(5): 2165-2169. doi: 10.7498/aps.55.2165
    [18] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [19] Guo Cun, Xu Rong-Kun, Lee Zheng-Hong, Xia Guang-Xin, Ning Jia-Min, Song Feng-Jun. The capacity study of fast plastics scintillator for x-ray energy. Acta Physica Sinica, 2004, 53(5): 1331-1334. doi: 10.7498/aps.53.1331
    [20] Li Jing-de. BOUNDARY COUPLING EFFECTS OF LATTICE VIBRATION IN ACOUSTIC BRANCH. Acta Physica Sinica, 1987, 36(8): 1010-1018. doi: 10.7498/aps.36.1010
Metrics
  • Abstract views:  820
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2024
  • Accepted Date:  11 October 2024
  • Available Online:  29 October 2024
  • Published Online:  05 December 2024

/

返回文章
返回