Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Higgs Physics Research: Yesterday, Today, and Tomorrow

Zhou Chen Zhu Yongfeng Guo Qianying Zhang Xuanhao Zhang Mingtao Geng Xinyue He Jiehan Pan Chengyang Wang Yipin Yang Chuxue Chen Jiahua

Citation:

Higgs Physics Research: Yesterday, Today, and Tomorrow

Zhou Chen, Zhu Yongfeng, Guo Qianying, Zhang Xuanhao, Zhang Mingtao, Geng Xinyue, He Jiehan, Pan Chengyang, Wang Yipin, Yang Chuxue, Chen Jiahua
PDF
Get Citation
  • This article reviews the discovery of the Higgs boson, discusses the studies of its properties, and introduces the physical prospects of the future Higgs factories.
    The greatest goal of particle physics is to understand the fundamental particles of the universe and how they interact (or more generally, how the universe works). In the Standard Model of particle phyiscs, the Higgs mechanism generates elementary particle masses and predicts the existence of the Higgs boson. Higgs physics is one of the most important research areas in particle physics.
    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) accelerates beams of protons to collide them at a center-of-mass energy of 13 TeV, defining the world’s energy frontier. The ATLAS and CMS detectors are two general-purpose detectors at the LHC, studying the debris from the collisions.
    The Higgs boson was discovered by the ATLAS and CMS experiments in 2012. This discovery completed the fundamental particle spectrum of the Standard Model and was a major milestone for particle physics. Since then, many studies of the Higgs boson properties (including spin, mass and couplings) have been performed to refine our understanding of the Higgs mechanism. In particular, the Higgs boson’s couplings to fermions and to itself are new kinds of fundamental interactions with paramount significance, and have not been fully established. Additionally, the Higgs boson has become an important tool to search for Dark Matter, heavy resonance, and other new physics phenomena. So far, there has been no deviation from the the Standard Model predictions.
    Looking towards the future, electron-positron colliders have been proposed to study the Higgs boson more deeply. Physics studies have shown that these Higgs factories can largely improve precision on many properties of the Higgs boson (including width and couplings) and provide great physics prospects.
  • [1]

    Higgs P W 1964 Phys. Lett. 12 132

    [2]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [3]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321

    [4]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Le

    [5]

    Alam M, et al. 1989 Physical Review D 40 712

    [6]

    Egli S, et al. 1989 Phys. Lett. B 222 533

    [7]

    Barate R, et al. 2003 Phys. Lett. B 565 61

    [8]

    Aaltonen T, et al. 2012 Phys. Rev. Lett. 109 071804

    [9]

    Aad G, et al. 2012 Phys. Lett. B 716 1

    [10]

    Chatrchyan S, et al. 2012 Phys. Lett. B 716 30

    [11]

    Aad G, et al. 2022 Nature 607 52

    [12]

    Tumasyan A, et al. 2022 Nature 607 60

    [13]

    Sirunyan A M, et al. 2020 Phys. Lett. B 805 135425

    [14]

    Tumasyan A, et al. 2022 Nature Phys. 18 1329

    [15]

    Aad G, et al. 2023 Phys. Rev. Lett. 131 251802

    [16]

    Aad G, et al. 2023 Phys. Lett. B 846 138223

    [17]

    Khachatryan V, et al. 2015 Phys. Rev. D 92 012004

    [18]

    Aad G, et al. 2015 Eur. Phys. J. C 75 476

    [19]

    Aaboud M, et al. 2018 Phys. Lett. B 784 173

    [20]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 120 231801

    [21]

    Sirunyan A M, et al. 2021 JHEP 01 148

    [22]

    Aad G, et al. 2021 Phys. Lett. B 812 135980

    [23]

    Degrassi G, Di Vita S, Elias-Miro J, Espinosa J R, Giudice G F, Isidori G, Strumia A 08 098

    [24]

    Sirunyan A M, et al. 2018 Phys. Lett. B 779 283

    [25]

    Aaboud M, et al. 2019 Phys. Rev. D 99 072001

    [26]

    Aaboud M, et al. 2018 Phys. Lett. B 786 59

    [27]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 121 121801

    [28]

    Sirunyan A M, et al. 2023 Phys. Rev. Lett. 131 061801

    [29]

    Aad G, et al. 2022 Eur. Phys. J. C 82 717

    [30]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009

    [31]

    Aad G, et al. 2024 Phys. Rev. Lett. 133 101801

    [32]

    Aad G, et al. 2020 Phys. Rev. D 101 012002

    [33]

    Aad G, et al. 2024 Phys. Rev. Lett. 132 021803

    [34]

    Cao Q H, Xu L X, Yan B, Zhu S h 2019 Physics Letters B 789 233

    [35]

    Andersen J R, et al. 2013 arXiv preprint arXiv:1307.1347

    [36]

    Aad G, et al. 2024

    [37]

    2020

    [38]

    Sirunyan A M, et al. 2017 JHEP 11 047

    [39]

    de Florian D, et al. 2017

    [40]

    Tumasyan A, et al. 2023 Phys. Rev. D 108 032013

    [41]

    Sirunyan A M, et al. 2020 Phys. Rev. Lett. 125 061801

    [42]

    Tumasyan A, et al. 2022 JHEP 06 012

    [43]

    Aad G, et al. 2023 Eur. Phys. J. C 83 563

    [44]

    Aad G, et al. 2020 Phys. Rev. Lett. 125 061802

    [45]

    Arbey A, Mahmoudi F 2021 Progress in Particle and Nuclear Physics 119 103865

    [46]

    Ward E 2019 LHC detector transverse cross-section. cds.cern.ch/record/2665178

    [47]

    Carpenter L, DiFranzo A, Mulhearn M, Shimmin C, Tulin S, Whiteson D 2014 Phys. Rev. D 075017

    [48]

    Aaboud M, et al. 2019 JHEP 05 142

    [49]

    Hayrapetyan A, et al. 2024

    [50]

    Lee T D 1973 Phys. Rev. D 8 1226

    [51]

    Branco G, Ferreira P, Lavoura L, Rebelo M, Sher M, Silva J P 2012 Theory and phenomenology two-Higgs-doublet models 516 1

    [52]

    Haber H E, Stål O 2015 Eur. Phys. J. C 75 491

    [53]

    Kling F, No J M, Su S 2016 J. High Energy Phys. 2016 93

    [54]

    Chalons G, Domingo F 2012 Phys. Rev. D 86 115024

    [55]

    Chen C Y, Freid M, Sher M 2014 Phys. Rev. D 89 075009

    [56]

    Muhlleitner M, Sampaio M O P, Santos R, Wittbrodt J 2017 JHEP 03 094

    [57]

    Robens T, Stefaniak T, Wittbrodt J 2020 Eur. Phys. J. C 80 151

    [58]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 272 1

    [59]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 278 449

    [60]

    Degrassi G, Heinemeyer S, Hollik W, Slavich P, Weiglein G 2003 Eur. Phys. J. C 28 133

    [61]

    Djouadi A 2008 Phys. Rep. 459 1

    [62]

    Giudice G F, Rattazzi R, Wells J D 2001 Nucl. Phys. B 595 250

    [63]

    Pappadopulo D, Thamm A, Torre R, Wulzer A 2014 J. High Energy Phys. 2014 60

    [64]

    Tumasyan A, et al. 2023 JHEP 07 073

    [65]

    Sirunyan A M, et al. 2020 JHEP 04 171. [Erratum: JHEP 03, 187 (2022)]

    [66]

    Sirunyan A M, et al. 2020 JHEP 03 034

    [67]

    Sirunyan A M, et al. 2020 JHEP 03 065

    [68]

    Sirunyan A M, et al. 2019 Eur. Phys. J. C 79 421

    [69]

    Zhu Y, Cui H, Ruan M 2022 J. High Energy Phys. 11 100

    [70]

    An F, et al. 2019 Chin. Phys. C 43 043002

    [71]

    Aryshev A, et al. 2022

    [72]

    Linssen L, Miyamoto A, Stanitzki M, Weerts H 2012

    [73]

    Dong M, et al. 2018

    [74]

    Agapov I, et al. 2022

    [75]

    Cheng H, et al. 2022 In Snowmass 2021

    [76]

    Liang H, Zhu Y, Wang Y, Che Y, Zhou C, Qu H, Ruan M 2024 Phys. Rev. Lett. 132 221802

    [77]

    Qu H, Gouskos L 2020 Phys. Rev. D 101 056019

    [78]

    Suehara T, Tanabe T 2016 Nucl. Instrum. Meth. A 808 109

    [79]

    Cui H, Zhao M, Wang Y, Liang H, Ruan M 2024 J. High Energy Phys. 05 210. [Erratum: JHEP 07,005 (2024), Erratum: JHEP 08, 119 (2024)]

    [80]

    Cepeda M, et al. 2019 CERN Yellow Rep. Monogr. 7 221

  • [1] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, doi: 10.7498/aps.73.20231566
    [2] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20240917
    [3] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, doi: 10.7498/aps.66.220201
    [4] Zhou Jie, Yao Ying-Li, Shao Gen-Fu, Shen Xiao-Yan, Liu Peng. An electromagnetic street scattering channel model for outdoor vehicular-to-vehicular communication systems. Acta Physica Sinica, doi: 10.7498/aps.65.140501
    [5] Chen Kun, Deng You-Jin. Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.64.180201
    [6] Han Jin-Zhong, Qin Zhen, Wang Xue-Lei. Joint production of Z boson and charged top-pion pair at the ILC. Acta Physica Sinica, doi: 10.7498/aps.61.041201
    [7] Quan Ya-Min, Liu Da-Yong, Zou Liang-Jian. Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model. Acta Physica Sinica, doi: 10.7498/aps.61.017106
    [8] Chen Xue-Wen, Fang Zhen-Yun, Zhang Jia-Wei, Zhong Tao, Tu Wei-Xing. Renormalization of two neutral mixing-loop chain propagators in standard model and its e+e-→μ+μ- cross section. Acta Physica Sinica, doi: 10.7498/aps.60.021101
    [9] Zhang Feng, Zhang Chun-Xu, Huang Ming-Qiu. Neutrino masses in the left-right symmetry model with a family symmetry. Acta Physica Sinica, doi: 10.7498/aps.59.3130
    [10] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, doi: 10.7498/aps.58.3799
    [11] Li Bo, Wang Yan-Shen. The q-boson hopping model with integrable open boundary condition. Acta Physica Sinica, doi: 10.7498/aps.56.1260
    [12] SUN JIU-XUN, ZHANG LI-YUAN. A COMBINATION MODEL OF SUPERCONDUCTIVITY UNDER s+d MIXED WAVE SYMMETRY. Acta Physica Sinica, doi: 10.7498/aps.45.1913
    [13] YU YANG-ZHENG, CHEN XIONG-XIONG. BREAKING OF SUPERSYMMETRY AND WITTEN INDEX IN TWO-DIMENSIONAL SUPERSYMMETRIC MODELS. Acta Physica Sinica, doi: 10.7498/aps.42.214
    [14] LIU LIAO, LI JIAN-ZHEN. TRACE ANOMALY AND THE TIME SYMMETRIC BOUNCING COSMOLOGICAL MODEL. Acta Physica Sinica, doi: 10.7498/aps.31.96
    [15] HOU BO-YU. GAUGE INDEPENDENCE, UNITARITY AND RENORMALI-ZABILITY OF A SPONTANEOUSLY BROKEN MODEL IN THE PERTURBATION THEORY. Acta Physica Sinica, doi: 10.7498/aps.26.317
    [16] ZHAO BAO-HENG. PHOTON-PHOTON SCATTERING IN SPONTANEOUSLY BROKEN GAUGE THEORIES. Acta Physica Sinica, doi: 10.7498/aps.25.53
    [17] YANG KUO-SHEN, LO LIAU-FU, LU TAN. AN INTERMEDIATE BOSON THEORY (Ⅰ)——BASIC HYPOTHESES AND SYMMETRIES. Acta Physica Sinica, doi: 10.7498/aps.22.1027
    [18] . Acta Physica Sinica, doi: 10.7498/aps.20.184
    [19] . Acta Physica Sinica, doi: 10.7498/aps.20.1292
    [20] . Acta Physica Sinica, doi: 10.7498/aps.20.928
Metrics
  • Abstract views:  51
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  13 November 2024

/

返回文章
返回