Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation analysis and design of electron deflector for eXTP focusing telescope

ZHENG Renzhou QIANG Pengfei YANG Yanji YAN Yongqing LI Yue SHENG Lizhi CHEN Yong

Citation:

Simulation analysis and design of electron deflector for eXTP focusing telescope

ZHENG Renzhou, QIANG Pengfei, YANG Yanji, YAN Yongqing, LI Yue, SHENG Lizhi, CHEN Yong
cstr: 32037.14.aps.74.20241649
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • X-ray focusing telescope is the core equipment for space X-ray observation. In order to ensure the accuracy of the observation results, it is necessary to deflect the low-energy electrons entering the focusing telescope to effectively reduce the background noise. In this work, the electron deflector for enhanced X-ray timing and polarimetry mission (eXTP) focusing telescope is developed to meet the deflection requirements of low-energy electrons in the focusing telescope optical system, with the lightweight, ability to deflect electrons , and electromagnetic compatibility considered. The finite element analysis software COMSOL Multiphysics is used to establish the full physical simulation model of the electron deflector and focusing telescope mirrors. The magnetic flux density distribution, electron deflection trajectories and the effect of magnetic field on focusing telescope mirrors are analyzed, and the electromagnetic parameters of the electron deflector are designed. The simulation results show that the closer to the magnet and the center of electron deflector, the greater the magnetic flux density, and the maximum magnetic flux density in the middle of the two spokes can reach 0.027 T. When the radius is larger than 280 mm, the longitudinal distance is larger than 60 mm, the magnetic flux density is less than 5×10–5 T (0.5 Gs), i.e. the geomagnetic intensity, which meets the design requirements of electromagnetic compatibility performance. When the incidence angle is ≤10°, the electron deflection efficiency decreases with the increase of electron energy and incidence angle, and the deflection efficiency of electrons below 50 keV energy can reach 100%, which meets the design requirements of electron deflection. In addition, as the focusing telescope mirrors are away from the electron deflector, the area of mirrors affected by the magnetic field becomes smaller and smaller. When the distance between the mirror bottom and electron deflector is 130 mm, the magnetic flux density at the mirror bottom only reaches 10–4 T. Similarly, as the focusing telescope mirrors are away from the electron deflector, the stress at the mirror bottom decreases from 103 N/m2 at 10 mm to 10–2 N/m2 at 60 mm, and the deformation at mirror bottom decreases from ~nm at 10 mm to 10–4 nm at 60 mm. When the distance between the mirror bottom and electron deflector is 130 mm, the stress is only 10–3 N/m2, and the deformation is only 10–5 nm, indicating that the magnetic field does not affect the optical properties of the focusing telescope. The above simulation analyses show that the design parameters of NdFeB magnet structure of the electron deflector fully meet the requirements of the eXTP focusing telescope optical system for the deflection of low-energy electrons. And the deflection efficiency of electrons with 25 keV energy, incidence angle within ±5°, and deflection distance of 5250 mm is 100%. These results provide an important reference for developing electron deflector of eXTP focusing telescope.
      Corresponding author: YAN Yongqing, yanyongqing@opt.ac.cn ; SHENG Lizhi, lizhi_sheng@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42327802, 62271483), the National Key Laboratory Foundation of China (Grant No. SKLIPR2021), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2023-JC-ZD-40, 2024JC-YBQN-0003), and the 76th General Program of the China Postdoctoral Science Foundation (Grant No. 2024M763511).
    [1]

    袁为民, 张臣, 陈勇, 孙胜利, 张永合, 崔伟, 凌志兴, 黄茂海, 赵冬华, 王文昕, 裘予雷, 刘柱, 潘海武, 蔡洪波, 邓劲松, 贾振卿, 金驰川, 孙惠, 胡海波, 刘飞飞, 张墨, 宋黎明, 卢方军, 贾淑梅, 李承奎, 赵海升, 葛明玉, 张娟, 崔苇苇, 王于仨, 王娟, 孙小进, 金戈, 黎龙辉, 陈凡胜, 蔡志鸣, 郭彤, 刘国华, 刘华秋, 冯骅, 张双南, 张冰, 戴子高, 吴雪峰, 苟利军 2018 中国科学: 物理学 力学 天文学 48 039502Google Scholar

    Yuan W M, Zhang C, Chen Y, Sun S L, Zhang Y H, Cui W, Lin Z X, Huang M H, Zhao D H, Wang W X, Qiu Y L, Liu Z, Pan H W, Cai H B, Deng J S, Jia Z Q, Jin C C, Sun H, Hu H B, Liu F F, Zhang M, Song L M, Lu F J, Jia S M, Li C K, Zhao H S, Ge M Y, Zhang J, Cui W W, Wang Y S, Wang J, Sun X J, Jin G, Li L H, Chen F S, Cai Z M, Guo T, Liu G H, Liu H Q, Feng H, Zhang S N, Zhang B, Dai Z G, Wu X F, Gou L J 2018 Sci. China: Phys. Mech. 48 039502Google Scholar

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech. 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Aslanyan V, Keresztes K, Feldman C, Pearson J F, Willingale R, Martindale A, Sembay S, Osborne J P, Sachdev S S, Bicknell C L, Houghton P R, Crawford T, Chornay D 2019 Rev. Scientif. Inst. 90 124502Google Scholar

    [6]

    Zhang S N, Santangelo A, Feroci M, et al. 2018 Sci. China: Phys. Mech. 62 029502

    [7]

    Yuan W M, Zhang C, Feng H, et al. 2015 Swift: 10 Years of Discovery

    [8]

    Yuan W M, Chen Z, Ling Z, et al. 2018 Proc. SPIE: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray 2018 1069925

    [9]

    Chen Y, Cui W W, Han D W, et al. 2020 Proc. SPIE: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020 11444B

    [10]

    Gehrels N, Chincarini G, Giommi P, et al. 2004 Astrophys. J. 611 1309

    [11]

    Willingale R 2000 An electron diverter for the Swift Telescope XRA study note XRT-LUX-RE-011/1 (University of Leicester

    [12]

    Friedrich P, Bräuninger H, Budau B, et al. 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [13]

    Spiga D, Fioretti V, Bulgarelli A, et al. 2008 Proc. SPIE: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray 7011 70112Y

    [14]

    Wang L, Qin L, Cheng J, et al. 2020 IEEE Trans. Appl. Supercond. 30 1

    [15]

    Lotti S, Mineo T, Jacquey C, et al. 2018 Exp. Astron. 45 411Google Scholar

    [16]

    Fioretti V, Bulgarelli A, Molendi S, et al. 2018 Astrophys. J. 867 9Google Scholar

    [17]

    Qi L Q, Li G, Xu Y P, et al. 2020 Nucl. Instrum. Meth. A 963 163702Google Scholar

    [18]

    Qi L Q, Li G, Xu Y P, Chen Y, He H L, Wang Y S, Yang Y J, Zhang J, Lu F J 2021 Exp. Astron. 51 475Google Scholar

    [19]

    Aguilar M, Alcaraz J, Allaby J, et al. 2002 Phys. Rep. 366 331Google Scholar

    [20]

    Aguilar M, Cavasonza L A, Ambrosi G, et al. 2021 Phys. Rep. 894 1Google Scholar

  • 图 1  聚焦镜及电子偏转器结构示意图[6]

    Figure 1.  Schematic diagram of the structure of focusing telescope and electron deflector[6].

    图 2  电子偏转器及聚焦镜镜片全物理仿真模型

    Figure 2.  Full physical simulation model of the electron deflector and focusing telescope mirrors.

    图 3  电子偏转器周围空间 (a)磁感应强度分布, 右侧彩色图例表示磁感应强度; (b)磁场方向

    Figure 3.  (a) Distribution of magnetic flux density, the color legend on the right represents the magnetic flux density; (b) magnetic field direction around the electron deflector.

    图 4  磁铁中心所在平面 (a)磁感应强度; (b)磁感应强度x分量; (c)磁感应强度y分量分布

    Figure 4.  Distribution of (a) magnetic flux density; (b) x component of magnetic flux density; (c) y component of magnetic flux density in the magnet center plane.

    图 5  磁感应强度沿两根辐条之间半径的分布情况

    Figure 5.  Distribution of magnetic flux density along the radius between two spokes.

    图 6  半径500 mm范围内磁感应强度平面分布

    Figure 6.  Plane distribution of magnetic flux density within a radius of 500 mm.

    图 7  磁感应强度纵向分布

    Figure 7.  Longitudinal distribution of magnetic flux density.

    图 8  电子偏转效率与电子能量和入射角的关系

    Figure 8.  Variations of electron deflection efficiency dependent on the electron energy and incidence angle.

    图 9  20°入射角极限情况 (a) 60 keV; (b) 80 keV; (c) 100 keV电子偏转轨迹

    Figure 9.  For the 20° incident angle limit case: (a) 60 keV; (b) 80 keV; (c) 100 keV electron deflection trajectories.

    图 10  入射角为5°时电子偏转效率与钕铁硼磁铁高度的关系

    Figure 10.  Variations of electron deflection efficiency dependent on the NdFeB magnet height at incident angle of 5°.

    图 11  聚焦镜镜片磁感应强度分布

    Figure 11.  Distribution of magnetic flux density of the focusing telescope mirrors.

    图 12  电子偏转器及聚焦镜镜片周围空间磁感应强度分布

    Figure 12.  Distribution of magnetic flux density around the electron deflector and focusing telescope mirrors.

    图 13  聚焦镜镜片应力分布

    Figure 13.  Stress distribution of the focusing telescope mirrors.

    图 14  聚焦镜镜片 (a)形变大小; (b)形变x分量; (c)形变y分量; (d)形变z分量

    Figure 14.  (a) Deformation, (b) x component of deformation, (c) y component of deformation, and (d) z component of deformation of the focusing telescope mirrors.

    图 15  聚焦镜镜片底端距离电子偏转器 (a) 10 mm, (b) 20 mm, (c) 40 mm, (d) 60 mm时聚焦镜镜片磁感应强度分布

    Figure 15.  Distribution of magnetic flux density of the focusing telescope mirrors when the distance between the mirror bottom and electron deflector is (a) 10 mm, (b) 20 mm, (c) 40 mm, and (d) 60 mm.

    图 16  聚焦镜镜片底端距离电子偏转器 (a) 10 mm, (b) 20 mm, (c) 40 mm, (d) 60 mm时电子偏转器及聚焦镜镜片周围空间磁感应强度分布

    Figure 16.  Distribution of magnetic flux density around the electron deflector and focusing telescope mirrors when the distance between the mirror bottom and electron deflector is (a) 10 mm, (b) 20 mm, (c) 40 mm, and (d) 60 mm.

    图 17  聚焦镜镜片底端距离电子偏转器 (a) 10 mm, (b) 20 mm, (c) 40 mm, (d) 60 mm时聚焦镜镜片应力分布

    Figure 17.  Stress distribution of the focusing telescope mirrors when the distance between the mirror bottom and electron deflector is (a) 10 mm, (b) 20 mm, (c) 40 mm, and (d) 60 mm.

    图 18  聚焦镜镜片底端距离电子偏转器 (a) 10 mm, (b) 20 mm, (c) 40 mm, (d) 60 mm时聚焦镜镜片形变

    Figure 18.  Deformation of the focusing telescope mirrors when the distance between the mirror bottom and electron deflector is (a) 10 mm, (b) 20 mm, (c) 40 mm, and (d) 60 mm.

    表 1  电子偏转器各材料参数

    Table 1.  Material parameters of the electron deflector.

    名称 材料/型号 数量 密度/(kg·m–3) 杨氏模量/(N·mm–2) 泊松比 质量/kg
    电子偏转器法兰 AA7075 1 2800 70000 0.33 0.339
    磁铁 NdFeB 120 7400 140000 0.224
    螺丝 TC4 7900 210000 0.3 0.003
    粘合胶 EC2216
    DownLoad: CSV

    表 2  电子偏转器钕铁硼(NdFeB)磁铁结构设计参数

    Table 2.  Structure design parameters of the electron deflector NdFeB magnet.

    序号 长度/mm 宽度/mm 高度/mm 剩磁/T
    #1 26 1.8 5 1.4
    #2 26 2.5 5 1.4
    #3 26 3 5 1.4
    #4 26 3.5 5 1.4
    #5 30 4 5 1.4
    DownLoad: CSV
  • [1]

    袁为民, 张臣, 陈勇, 孙胜利, 张永合, 崔伟, 凌志兴, 黄茂海, 赵冬华, 王文昕, 裘予雷, 刘柱, 潘海武, 蔡洪波, 邓劲松, 贾振卿, 金驰川, 孙惠, 胡海波, 刘飞飞, 张墨, 宋黎明, 卢方军, 贾淑梅, 李承奎, 赵海升, 葛明玉, 张娟, 崔苇苇, 王于仨, 王娟, 孙小进, 金戈, 黎龙辉, 陈凡胜, 蔡志鸣, 郭彤, 刘国华, 刘华秋, 冯骅, 张双南, 张冰, 戴子高, 吴雪峰, 苟利军 2018 中国科学: 物理学 力学 天文学 48 039502Google Scholar

    Yuan W M, Zhang C, Chen Y, Sun S L, Zhang Y H, Cui W, Lin Z X, Huang M H, Zhao D H, Wang W X, Qiu Y L, Liu Z, Pan H W, Cai H B, Deng J S, Jia Z Q, Jin C C, Sun H, Hu H B, Liu F F, Zhang M, Song L M, Lu F J, Jia S M, Li C K, Zhao H S, Ge M Y, Zhang J, Cui W W, Wang Y S, Wang J, Sun X J, Jin G, Li L H, Chen F S, Cai Z M, Guo T, Liu G H, Liu H Q, Feng H, Zhang S N, Zhang B, Dai Z G, Wu X F, Gou L J 2018 Sci. China: Phys. Mech. 48 039502Google Scholar

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech. 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Aslanyan V, Keresztes K, Feldman C, Pearson J F, Willingale R, Martindale A, Sembay S, Osborne J P, Sachdev S S, Bicknell C L, Houghton P R, Crawford T, Chornay D 2019 Rev. Scientif. Inst. 90 124502Google Scholar

    [6]

    Zhang S N, Santangelo A, Feroci M, et al. 2018 Sci. China: Phys. Mech. 62 029502

    [7]

    Yuan W M, Zhang C, Feng H, et al. 2015 Swift: 10 Years of Discovery

    [8]

    Yuan W M, Chen Z, Ling Z, et al. 2018 Proc. SPIE: Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray 2018 1069925

    [9]

    Chen Y, Cui W W, Han D W, et al. 2020 Proc. SPIE: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020 11444B

    [10]

    Gehrels N, Chincarini G, Giommi P, et al. 2004 Astrophys. J. 611 1309

    [11]

    Willingale R 2000 An electron diverter for the Swift Telescope XRA study note XRT-LUX-RE-011/1 (University of Leicester

    [12]

    Friedrich P, Bräuninger H, Budau B, et al. 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [13]

    Spiga D, Fioretti V, Bulgarelli A, et al. 2008 Proc. SPIE: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray 7011 70112Y

    [14]

    Wang L, Qin L, Cheng J, et al. 2020 IEEE Trans. Appl. Supercond. 30 1

    [15]

    Lotti S, Mineo T, Jacquey C, et al. 2018 Exp. Astron. 45 411Google Scholar

    [16]

    Fioretti V, Bulgarelli A, Molendi S, et al. 2018 Astrophys. J. 867 9Google Scholar

    [17]

    Qi L Q, Li G, Xu Y P, et al. 2020 Nucl. Instrum. Meth. A 963 163702Google Scholar

    [18]

    Qi L Q, Li G, Xu Y P, Chen Y, He H L, Wang Y S, Yang Y J, Zhang J, Lu F J 2021 Exp. Astron. 51 475Google Scholar

    [19]

    Aguilar M, Alcaraz J, Allaby J, et al. 2002 Phys. Rep. 366 331Google Scholar

    [20]

    Aguilar M, Cavasonza L A, Ambrosi G, et al. 2021 Phys. Rep. 894 1Google Scholar

  • [1] Huo Guan-Zhong, Su Chao, Wang Ke, Ye Qing-Ying, Zhuang Bin, Chen Shui-Yuan, Huang Zhi-Gao. Magnetic field modulation of photocurrent in BiFeO3 film. Acta Physica Sinica, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [2] Cui Xiang. Magnetic field and inductance of filament conductor segment model with current continuity. Acta Physica Sinica, 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [3] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [4] Tang Tian-Tian, Zhang Chao-Min, Zhang Min. Photodetached electron flux of H- in magnetic field near a metal surface. Acta Physica Sinica, 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [5] Li Wen-Hui, Hu Man-Li, Ma Zhi-Bo, Zhong Lan-Xiang, Wan Yun. Temporal evolution and controllable factors for self-deflection of screening photovoltaic solitons in LiNbO3 crystal. Acta Physica Sinica, 2012, 61(2): 020201. doi: 10.7498/aps.61.020201
    [6] Liu Jian, Zhang Hong, Zhang Chun-Yuan, Zhang Hui-Liang. Charged excitons in parabolic quantum-well wires under magnetic filed. Acta Physica Sinica, 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [7] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [8] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui. The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [9] Cai Li-Bing, Wang Jian-Guo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface. Acta Physica Sinica, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [10] Chen Jie, Lu Xi-Wen. A method for magnetic field prediction caused by naval vessels using magnetic charge distribution. Acta Physica Sinica, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [11] Wang Jin, Hua Jie, Ding Gui-Ying, Chang Xi, Zhang Gang, Jiang Wen-Long. Effects of magnetic field on organic electroluminescence. Acta Physica Sinica, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [12] Zhang Wen. Micro-gravity effect in a magnetic field. Acta Physica Sinica, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [13] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Chen Ke-Qiu. The localized electronic states and transmission spectra in N-layer superlattice with structural defects in finite magnetic fields. Acta Physica Sinica, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [14] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [15] Li Yu-Xian, Liu Jian-Jun, Li Bo-Zang. Conductance and thermopower in quantum point contact: effect of magnetic field and temperature. Acta Physica Sinica, 2005, 54(3): 1366-1369. doi: 10.7498/aps.54.1366
    [16] Zhang Guo-Ying, Zhang Hui, Liu Chun-Ming, Zhou Yong-Jun. The study on the ultrafine mechanism of steels: strain-induced phase-transform ation form austenite to ferrite. Acta Physica Sinica, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [17] Huang Wei-Qing, Chen Ke-Qiu, Shuai Zhi-Gang, Wang Ling-Ling, Hu Wang-Yu. Magneto-coupling effect on surface electron states in a semi-infinite superlattice. Acta Physica Sinica, 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
    [18] Oyang Shi-Gen, Guan Yi, She Wei-Long. . Acta Physica Sinica, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [19] CHEN ZHENG-LIN, ZHANG JIE. CONFIGURATION OF MAGNETIC FIELDS INDUCED BY SUPERTHERMAL ELECTRONS. Acta Physica Sinica, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [20] CHEN ZHENG-LIN, ZHANG JIE. CONFIGURATION OF MAGNETIC FIELDS INDUCED BY SUPERTHERMAL ELECTRONS. Acta Physica Sinica, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
Metrics
  • Abstract views:  466
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2024
  • Accepted Date:  27 December 2024
  • Available Online:  06 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回