Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin exchange of two spin-1/2 atoms

PAN Zeming TAN Naiming GAO Chao YAO Zhihai WANG Xiaoqian

Citation:

Spin exchange of two spin-1/2 atoms

PAN Zeming, TAN Naiming, GAO Chao, YAO Zhihai, WANG Xiaoqian
cstr: 32037.14.aps.74.20241781
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The quantum Cheshire cat effect is an important phenomenon in quantum mechanics that reveals the separability of physical properties from their carriers. This effect transcends the classical framework whose attributes must be inherently attached to objects, providing new perspectives for quantum information and precision measurement. According to the quantum Cheshire cat effect, we prepare a pre-selected state of a spin-1/2 atomic system composed of two particles through a pre-selection process. We conduct quantum weak measurements on the spins and positions of these two atoms and extract weak values by using the method of imaginary time evolution (ITE). Subsequently, we perform post-selection on these two atoms and design two distinct post-selected states. Initially, we calculate analytical solutions when both atoms encounter these two different post-selected states separately. Then, during the stage of obtaining weak values via ITE, we first discuss the scenario with only one post-selected state. In this case, our experimental goal is to achieve spin exchange between the two atoms. We use ITE to obtain normalized coincidence rate for the system. By linearly fitting these normalized coincidence rate, we derive numerical solutions for the weak values of the system. The comparison between the analytical solutions and numerical results indicates that they are in close agreement, demonstrating that our method promotes spin exchange between the two atoms. Next, we examine scenarios involving both post-selected states in the post-selection process. After completing weak measurements on particles, delayed-choice allows them to evolve along different paths ultimately leading to distinct post-selected states. One particular post-selected state that results in final measurement outcomes indicates that the spin exchange occurs between both particles with amplification. Conversely, the other post-selected state ensures that even after undergoing weak measurement and delayed-choice, the states of the two particles remain consistent with their pre-measurement conditions. We also compare the analytical and numerical solutions of the experiment involving delayed choice and find that they are very consistent with each other. This consistency indicates that delayed-choice indeed has a significant influence on whether the final exchange occurs. Our research theoretically confirms the feasibility of fermionic systems within bipartite quantum Cheshire cat effects and illustrates how delayed-choice influences quantum Cheshire cat effects in spin-1/2 atomic systems.
      Corresponding author: WANG Xiaoqian, xqwang21@163.com
    • Funds: Project supported by the Jilin Provincial Research Foundation for Basic Research, China (Grant No. YDZJ202101ZYTS030).
    [1]

    Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15 113015Google Scholar

    [2]

    Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 5 4492Google Scholar

    [3]

    Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 7 14Google Scholar

    [4]

    Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 7 13Google Scholar

    [5]

    Das D, Sen U 2021 Phys. Rev. A 103 012228Google Scholar

    [6]

    Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 2018 7060586Google Scholar

    [7]

    Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 12 18Google Scholar

    [8]

    Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 13 3865Google Scholar

    [9]

    Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107 052214Google Scholar

    [10]

    Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26 073038Google Scholar

    [11]

    Das D, Pati A K 2020 New J. Phys. 22 063032Google Scholar

    [12]

    Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 11 3006Google Scholar

    [13]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [14]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [15]

    Bloch I, Zoller P 2006 New J. Phys. 8 E02Google Scholar

    [16]

    Puentes G 2015 J. Phys. B. 48 245301Google Scholar

    [17]

    Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131 110602Google Scholar

    [18]

    Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410Google Scholar

    [19]

    Wheeler J A 1978 Mathematical Foundations of Quantum Theory (Amsterdam: Elsevier) pp9–48

    [20]

    Witten E 2018 Rev. Mod. Phys. 90 045003Google Scholar

    [21]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517Google Scholar

    [22]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [23]

    Wick G C 1954 Phys. Rev. 96 1124Google Scholar

    [24]

    Landsman N, van Weert C 1987 Phys. Rep. 145 141Google Scholar

    [25]

    Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 7 13194Google Scholar

    [26]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

  • 图 1  自旋-1/2原子自旋交换及自旋放大原理示意图. 在前选择部分, 制备出符合理论预期的前选态$ |i\rangle $. 在弱测量(WM)部分, 分束器(BS)将两个原子分束, 两个原子分束后进入位置密度处理器(LD)与自旋灵敏密度处理器(SD)中. 在后选择部分, 两个原子通过一个由1与0控制的随机开关同步进行选择, 确保两个原子同时随机获取其中一种后选态. 两个原子通过BS后, 将通过下路径的原子称为原子1, 以黄色表示; 将通过上路径的原子称为原子2, 以蓝色表示. 完成弱测量后, 用浅绿色表示原子1, 深绿色表示原子2

    Figure 1.  Schematic diagram of spin-1/2 atomic spin exchange and spin amplification principle In the pre-selection section, prepare a pre-selected state $ |i\rangle $that meets theoretical expectations. In the weak measurement (WM) section, the beam splitter (BS) splits two atoms into beams, which then enter the position density processor (LD) and spin-sensitive density processor (SD). In the post-selection section, two atoms will select synchronlusly through a random switch controlled by 1 and 0, ensuring two atoms simultaneously randomly obtain one of the post-selected states. After two atoms pass through BS, the atom passing through the downward path is called atom-1, represented in yellow; the atom passing through the upper path is called atom-2, represented in blue. After completing the weak measurement, use light green to represent atom-1 and dark green to represent atom-2.

    图 2  归一化符合率N(t)随tα的变化趋势. 图中t的取值范围为0—1, α取值范围为0—$ {\pi}/{2} $

    Figure 2.  Trend of normalized coincidence rate N(t) as a function of t and α. The value range of t in the figure is from 0 to 1, and the value range of α in the figure is from 0 to $ {\pi}/{2} $.

    图 3  α取$ {\pi}/{4} $时, 两个原子的归一化符合率N(t)随t的变化趋势. 左图为原子1的数据, 右图为原子2的数据. 因N(t)与t存在函数关系, 所以此处直接用弱值符号代表相关可观测量的N(t)

    Figure 3.  When α takes $ {\pi}/{4} $, the normalized coincidence rate N(t) of two atoms varies with t. The left image shows the data for atom-1, and the right image shows the data for atom-2. Due to the functional relationship between N(t) and t, weak values are directly used here to represent the N(t) of the relevant observables.

    图 4  加入延迟选择后系统的ITE图像. 因系统会获得两种不同的后选态, 演化后系统中每个原子与自旋相关的归一化符合率会产生差异

    Figure 4.  Add ITE images to the system after delay selection. The system will obtain two different post selected states, and the normalized coincidence rate of each atom with spin in the evolved system will vary.

  • [1]

    Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15 113015Google Scholar

    [2]

    Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 5 4492Google Scholar

    [3]

    Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 7 14Google Scholar

    [4]

    Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 7 13Google Scholar

    [5]

    Das D, Sen U 2021 Phys. Rev. A 103 012228Google Scholar

    [6]

    Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 2018 7060586Google Scholar

    [7]

    Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 12 18Google Scholar

    [8]

    Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 13 3865Google Scholar

    [9]

    Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107 052214Google Scholar

    [10]

    Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26 073038Google Scholar

    [11]

    Das D, Pati A K 2020 New J. Phys. 22 063032Google Scholar

    [12]

    Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 11 3006Google Scholar

    [13]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [14]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [15]

    Bloch I, Zoller P 2006 New J. Phys. 8 E02Google Scholar

    [16]

    Puentes G 2015 J. Phys. B. 48 245301Google Scholar

    [17]

    Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131 110602Google Scholar

    [18]

    Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410Google Scholar

    [19]

    Wheeler J A 1978 Mathematical Foundations of Quantum Theory (Amsterdam: Elsevier) pp9–48

    [20]

    Witten E 2018 Rev. Mod. Phys. 90 045003Google Scholar

    [21]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517Google Scholar

    [22]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [23]

    Wick G C 1954 Phys. Rev. 96 1124Google Scholar

    [24]

    Landsman N, van Weert C 1987 Phys. Rep. 145 141Google Scholar

    [25]

    Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 7 13194Google Scholar

    [26]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Physica Sinica, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [3] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [4] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [5] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [6] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [7] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [8] Li Zhuo, Xing Li-Juan. Error bases, group algebra and quantum codes. Acta Physica Sinica, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [9] Peng Jin-Ye, Wang Yun-Jiang, Wang Xin-Mei, Bai Bao-Ming. Feedback sum-product decoding of sparse quantum codes for X-Z Pauli channels. Acta Physica Sinica, 2011, 60(3): 030306. doi: 10.7498/aps.60.030306
    [10] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [11] Wang Yun-Jiang, Bai Bao-Ming, Wang Xin-Mei. Feedback iterative decoding of sparse quantum codes. Acta Physica Sinica, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [12] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [13] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] Xing Li-Juan, Li Zhuo, Bai Bao-Ming, Wang Xin-Mei. Encoding and decoding of quantum convolutional codes. Acta Physica Sinica, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [15] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [16] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [17] Li Zhuo, Xing Li-Juan. A family of asymptotically good quantum codes based on code concatenation. Acta Physica Sinica, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [18] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [19] Zhang Quan, Zhang Er-Yang. . Acta Physica Sinica, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [20] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
Metrics
  • Abstract views:  417
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2024
  • Accepted Date:  24 February 2025
  • Available Online:  13 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回