Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum phase transitions in coupled optomechanical cavities

ZHANG Wenhui ZHAO Xiuqin

Citation:

Quantum phase transitions in coupled optomechanical cavities

ZHANG Wenhui, ZHAO Xiuqin
cstr: 32037.14.aps.74.20250046
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, the quantum phase transitions caused by the interactions between light and atoms, as well as between light and mechanical oscillators, are discussed theoretically in a coupled optomechanical cavity containing two optical field modes (N atoms and mechanical oscillator). By using Holstein-Primak off transformation method, new translational boson operators and four parameters are assumed. The ground state energy functional of the system and a set of equations composed of four parameters are given. The correctness of the assumed translation boson operators is proved by two special cases. In the case of resonance, the characteristics of the obtained solutions are shown by solving the equations, graphical method and Hessian matrix judgment. The stable zero solution is called the normal phase, the unstable zero solution is named the unstable vacuum macroscopic phase, and the stable non-zero solution is referred to as the superradiation phase. The phase can transition from normal phase to superradiation phase, and the point of phase transition can be changed by adjusting the coupling intensity of the two cavity light fields. When the nonlinear photon-phonon interaction caused by radiation pressure is considered, the phase diagram of the system is expanded from the original two phase regions to three phase regions, including the coexistent normal phase and superradiation phase, the bistable superradiation phase, and the unstable vacuum macroscopic phase region, where the bistable superradiation phase is similar to the optical bistable phenomenon. At the same time, there is also a turning point curve, which overlaps with the phase transition point curve, indicating the existence of multiple quantum phase transitions in the system. These predictions can be detected by measuring the average number of photons. The coupled optomechanical cavity that we studied, when considering the coupling of the two-mode optical field and the atomic ensemble but no mechanical oscillator, reflects the interaction between the two-mode optical field and the atom, thus concluding that the transformation point is small and the quantum phase transition is easy to occur. When the coupling between the mechanical oscillator and the two-mode optical field is not considered, the interaction between the single-mode optical field and the atom is reflected, returning to the quantum phase transition of the Dicke model under rotating wave approximation.
      Corresponding author: ZHANG Wenhui, zhangwh@tynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304404) and the Basic Research Project of Shanxi Province, China (Grant No. 202203021222236).
    [1]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [2]

    Wang Y K, Hioe F T 1973 Phys. Rev. A. 7 831Google Scholar

    [3]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069Google Scholar

    [5]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [6]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [7]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [8]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar

    [9]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [10]

    Shen L T, Pei X T, Shi Z C, Yang Z B 2024 Eur. Phys. J. D 78 91Google Scholar

    [11]

    LuoY Q, Liu N, Liang J Q 2024 Phys. Rev. A 110 063320Google Scholar

    [12]

    Qin W, Zheng D C, Wu Z D, Chen Y H, Liao R Y 2024 Phys. Rev. A 109 013310Google Scholar

    [13]

    赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [14]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [15]

    Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601Google Scholar

    [16]

    Samanta A, Jana P C 2023 Journal of Optics 52 494Google Scholar

    [17]

    Li L C, Zhang J Q 2021 Photonics 8 588Google Scholar

    [18]

    Lan Z L, Chen Y W, Cheng L Y, Chen L, Ye S Y, Zhong Z R 2024 Quantum Inf. Process. 23 72Google Scholar

    [19]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar

    [20]

    Bai C H, Wang D Y, Wang H F, Zhu A D, Zhang S 2016 Sci. Rep. 6 33404Google Scholar

    [21]

    Nejad A A, Askari H R, Baghshahi H R 2017 Appl. Opt. 56 2816Google Scholar

    [22]

    Huang S, Liu N, Liang J Q, Li H B 2021 Phys. Scr. 96 095801Google Scholar

    [23]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [24]

    Clive E, Tobias B 2003 Phys. Rev. E 67 066203Google Scholar

    [25]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar

    [26]

    黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽 2015 物理学报 64 044204Google Scholar

    Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204Google Scholar

    [27]

    Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [28]

    刘要稳, 赵鸿, 汪映海 1999 物理学报 48 198Google Scholar

    Liu Y W, Zhao H, Wang Y H 1999 Acta Phys. Sin. 48 198Google Scholar

  • 图 1  耦合光机械腔的示意图[2022], A腔和C腔通过两模光场耦合强度J耦合, A腔中有二能级原子系综, 由具有强度$ {\varOmega _{\text{p}}} $和频率$ {\omega _{\text{p}}} $的外部单模激光场相干驱动, C腔是光机械腔

    Figure 1.  Schematic illustration of the coupled optomechanical cavities [2022], cavity A and cavity C are coupled by a two-mode optical field coupling strength J. An ensemble of two-level atoms is placed into the cavity A which is coherently driven by an external monochromatic laser field with strength $ {\varOmega _{\text{p}}} $ and frequency $ {\omega _{\text{p}}} $, cavity C is a optomechanical cavity.

    图 2  $ g/{\omega _{\text{b}}}{\text{ - }}J/{\omega _{\text{b}}} $的相图

    Figure 2.  Phase diagram of $ g/{\omega _{\text{b}}}{\text{ - }}J/{\omega _{\text{b}}} $.

    图 3  选择A, B两个点, 参量为$ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 10, 15 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $ (a1), (a2)对应的一阶偏导数p; (b1), (b2)对应的平均基态能量$ \varepsilon $

    Figure 3.  Select points A and B, parameters $ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 10, 15 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $: (a1), (a2) The corresponding first partial derivatives p; (b1), (b2) the corresponding average ground state energies $ \varepsilon $.

    图 4  选择D点, 参量为$ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 30 $, $ \zeta /{\omega _{\text{b}}} = 0 $, $ 1.0 $, $ 2.0 $ (a1)—(a3) 对应的一阶偏导数p; (b1)—(b3) 对应的平均基态能量$ \varepsilon $

    Figure 4.  Select D point, parameters $ J = 10{\omega _{\text{b}}} $, $ g/{\omega _{\text{b}}} = 30 $, $ \zeta /{\omega _{\text{b}}} = 0 $, $ 1.0 $, $ 2.0 $: (a1)–(a3) Corresponding first partial derivatives p; (b1)–(b3) the corresponding average ground state energies $ \varepsilon $.

    图 5  取参量$ {\text{ }}g/{\omega _{\text{b}}} = 25 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $, $ {\text{ }}J/{\omega _{\text{b}}} = 0 \to 20{\text{ }} $, A腔和C腔的平均光子数分布$ {n_{{\text{pA}}}} $ (a1)和$ {n_{{\text{pC}}}} $(a3), A腔中原子布居差的分布$ \varDelta {n_{\text{a}}} $(a2)随两模光场的耦合参量J变化曲线, $ {\text{ }}{J_{\text{t}}}/{\omega _{\text{b}}} $是转折点

    Figure 5.  Take parameters $ {\text{ }}g/{\omega _{\text{b}}} = 25 $, $ \zeta /{\omega _{\text{b}}} = 1.0 $, $ {\text{ }}J/{\omega _{\text{b}}} = 0 \to 20{\text{ }} $: The changing curves of average photon number distribution $ {n_{{\text{pA}}}} $ (a1) and $ {n_{{\text{pC}}}} $ (a3) in cavity A and cavity C, and the distribution of atomic population difference $ \varDelta {n_{\text{a}}} $ (a2) in cavity A, with the coupling parameter J of the two-mode optical field, $ {\text{ }}{J_{\text{t}}}/{\omega _{\text{b}}} $ is a turning point.

    图 6  $ g/{\omega _{\text{b}}}\sim J/{\omega _{\text{b}}} $平面相图 (a1) $ \zeta /{\omega _{\text{b}}} = 0.0 $; (a2) $ \zeta /{\omega _{\text{b}}} = 1.0 $; (a3) $ \zeta /{\omega _{\text{b}}} = 2.0 $

    Figure 6.  Phase diagram in a plane $ g/{\omega _{\text{b}}}\sim J/{\omega _{\text{b}}} $: (a1) $ \zeta /{\omega _{\text{b}}} = 0.0 $; (a2) $ \zeta /{\omega _{\text{b}}} = 1.0 $; (a3) $ \zeta /{\omega _{\text{b}}} = 2.0 $.

    表 1  旋波近似时Dicke模型基态物理量的分布情况

    Table 1.  Distribution of physical quantities in the ground state of Dicke model in rotating-wave approximation.

    基态物理量 $g \leqslant g_{\text{c}}^{\text{R}}$ $g > g_{\text{c}}^{\text{R}}$
    平均光子数分布
    ${n_{{\text{pA}}}} = \alpha $
    0 $ \dfrac{1}{4}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left( {1 - \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $
    布居数差分布
    $\varDelta {n_{\text{a}}} = \beta - {1}/{2}$
    $ - \dfrac{1}{2}$ $ - \dfrac{{g_{\text{c}}^{{\text{R2}}}}}{{2{g^2}}} $
    平均基态能量
    $ {H_0}/{\varDelta _0}$
    $ - \dfrac{1}{2}$ $ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}{\varDelta _0}}}}\left( {1 + \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $
    DownLoad: CSV

    表 2  考虑与C腔中光场有相互作用时基态物理量的分布情况

    Table 2.  Distribution of physical quantities in the ground state interacting with the light field in the cavity C is considered.

    基态物理量 $g \leqslant g_{\text{c}}^J$ $g > g_{\text{c}}^J$
    平均光子数分布$\left\{ \begin{aligned} {n_{{{\text{p}}_{\text{a}}}}} = \alpha \\ {n_{{{\text{p}}_{\text{c}}}}} = \rho\end{aligned} \right.$ 0 $ \left\{ \begin{aligned}& \alpha = \dfrac{{{g^2}}}{{4\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \\ &\rho = \dfrac{{{J^2}}}{{4\varDelta _{\text{c}}^{2}}}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \end{aligned} \right. $
    布居数差分布$\Delta {n_{\text{a}}} = \beta - {1}/{2}$ $ - \dfrac{1}{2}$ $ - \dfrac{{g_{\text{c}}^{J2}}}{{2{g^2}}} $
    平均基态能量$ {H_0}/{{\varDelta _0}} $ $ - \dfrac{1}{2}$ $ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}{\varDelta _0}}}}\left(1 + \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) $
    DownLoad: CSV

    表 3  4个红点AD在$ \zeta /{\omega _{\text{b}}}{\text{ = 0, 1}}{\text{.0, 2}}{.0} $时, 3个参量$ \alpha , \beta , \rho $的解的具体数值

    Table 3.  When the four red dots are at $ \zeta /{\omega _{\text{b}}} = 0, 1.0, 2.0$, the specific values of the solutions of the three parameters $ \alpha, \beta, \rho $.

    正常相区点A 正常相区点B
    $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $
    0 $ \left\{ \begin{aligned} \alpha = {2}{.380} \\ \beta = {0}{.228} \\ \rho = {7}{.107}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.663} \\ \beta = {0}{.112} \\ \rho = {1}{.725}\end{aligned} \right.{\text{ }} $ $ 0 $ $ \left\{ \begin{aligned} \alpha = {2}{.739} \\ \beta = {0}{.313} \\ \rho = {6}{.835}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.868} \\ \beta = {0}{.209} \\ \rho = {1}{.571}\end{aligned} \right.{\text{ }} $
    超辐射区相点C 超辐射区相点D
    $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $
    $ \left\{ \begin{aligned} \alpha = {0}{.534} \\ \beta = {0}{.260} \\ \rho = {0}{.134}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.541} \\ {\beta _1} = {0}{.261} \\ {\rho _1} = {0}{.139}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {3}{.474} \\ {\beta _2} = {0}{.395} \\ {\rho _2} = {6}{.280}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _1} = {0}{.568} \\ {\beta _1} = {0}{.262} \\ {\rho _1} = {0}{.162}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {1}{.295} \\ {\beta _2} = {0}{.334} \\ {\rho _2} = {1}{.203}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} \alpha = 0.889 \\ \beta = {0}{.333} \\ \rho = {0}{.222}\end{aligned} \right. $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.905} \\ {\beta _1} = {0}{.335} \\ {\rho _1} = {0}{.237}\end{aligned} \right. $
    $ \left\{ \begin{aligned} {\alpha _2} = {3}{.853} \\ {\beta _2} = {0}{.416} \\ {\rho _2} = {5}{.989}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _1} = {1}{.000} \\ {\beta _1} = {0}{.342} \\ {\rho _1} = {0}{.332}\end{aligned} \right.{\text{ }} $
    $ \left\{ \begin{aligned} {\alpha _2} = {1}{.462} \\ {\beta _2} = {0}{.367} \\ {\rho _2} = {0}{.946}\end{aligned} \right.{\text{ }} $
    DownLoad: CSV
  • [1]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [2]

    Wang Y K, Hioe F T 1973 Phys. Rev. A. 7 831Google Scholar

    [3]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069Google Scholar

    [5]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [6]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [7]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [8]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar

    [9]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [10]

    Shen L T, Pei X T, Shi Z C, Yang Z B 2024 Eur. Phys. J. D 78 91Google Scholar

    [11]

    LuoY Q, Liu N, Liang J Q 2024 Phys. Rev. A 110 063320Google Scholar

    [12]

    Qin W, Zheng D C, Wu Z D, Chen Y H, Liao R Y 2024 Phys. Rev. A 109 013310Google Scholar

    [13]

    赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [14]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [15]

    Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601Google Scholar

    [16]

    Samanta A, Jana P C 2023 Journal of Optics 52 494Google Scholar

    [17]

    Li L C, Zhang J Q 2021 Photonics 8 588Google Scholar

    [18]

    Lan Z L, Chen Y W, Cheng L Y, Chen L, Ye S Y, Zhong Z R 2024 Quantum Inf. Process. 23 72Google Scholar

    [19]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar

    [20]

    Bai C H, Wang D Y, Wang H F, Zhu A D, Zhang S 2016 Sci. Rep. 6 33404Google Scholar

    [21]

    Nejad A A, Askari H R, Baghshahi H R 2017 Appl. Opt. 56 2816Google Scholar

    [22]

    Huang S, Liu N, Liang J Q, Li H B 2021 Phys. Scr. 96 095801Google Scholar

    [23]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [24]

    Clive E, Tobias B 2003 Phys. Rev. E 67 066203Google Scholar

    [25]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar

    [26]

    黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽 2015 物理学报 64 044204Google Scholar

    Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204Google Scholar

    [27]

    Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [28]

    刘要稳, 赵鸿, 汪映海 1999 物理学报 48 198Google Scholar

    Liu Y W, Zhao H, Wang Y H 1999 Acta Phys. Sin. 48 198Google Scholar

  • [1] SHE Yanchao, XU Mingqi, FENG Wenya, LIU Jiaqi, YANG Hong. Magneton bistability in quantum dot-double cavity optomechanical coupling system. Acta Physica Sinica, 2025, 74(12): 124203. doi: 10.7498/aps.74.20250172
    [2] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [3] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] Liu Ni, Zhang Xiao-Fang, Liang Jiu-Qing. Dynamical phase transition and selective energy exchange in dual-cavity optochanical systems. Acta Physica Sinica, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [5] Liu Ni, Wang Jian-Fen, Liang Jiu-Qing. Ground-state cooling of mechanical resonator in double optical cavity. Acta Physica Sinica, 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [6] Zhang Xiu-Long, Bao Qian-Qian, Yang Ming-Zhu, Tian Xue-Song. Entanglement characteristics of output optical fields in double-cavity optomechanics. Acta Physica Sinica, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [7] Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run. Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator. Acta Physica Sinica, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [8] Zhao Hao-Yu, Deng Hong-Chang, Yuan Li-Bo. Airy fiber: waveguides array coupling based light beam control method. Acta Physica Sinica, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [9] Xiao Jia, Xu Da-Hai, Yi Zhen, Gu Wen-Ju. Optomechanical interaction with triple membranes. Acta Physica Sinica, 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [10] Liu Xiao-Juan, Zhou Bing-Ju, Liu Yi-Man, Jiang Chun-Lei. Manipulation of entanglement and preparation of quantum states for moving two-atom and the light field via intensity-dependent coupling. Acta Physica Sinica, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [11] Chen Hua-Jun, Mi Xian-Wu. Normal mode splitting and cooling in strong coupling optomechanical cavity. Acta Physica Sinica, 2011, 60(12): 124206. doi: 10.7498/aps.60.124206
    [12] Chang Yan-Qin, Shen Tao, Andreev Y. M., Shaiduko A. V., Huang Jin-Zhe, Wang Hong. Simulation of the temperature-beam coupling in frequency doubling of BBO crystals. Acta Physica Sinica, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [13] Lin Min, Meng Ying. Frequency coupling in bistable system and the mechanism of stochastic resonance. Acta Physica Sinica, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [14] Lin Min, Huang Yong-Mei, Fang Li-Min. The stochastic resonance control of coupled bistable systems. Acta Physica Sinica, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
    [15] Qian Yan, Ma Ai-Qun, Ma Zhi-Min, Liu Zheng-Jun, Liu Shu-Tian. Properties of the phase evolution of two coupled atoms Raman interacting with squeezed vacuum field. Acta Physica Sinica, 2007, 56(8): 4571-4577. doi: 10.7498/aps.56.4571
    [16] Huang Chun-Jia, He Hui-Yong, Kong Fan-Zhi, Fang Jia-Yuan. Evolution of the entropy of light field interacting with the V-type three-level atom via intensity-dependent coupling. Acta Physica Sinica, 2004, 53(8): 2539-2543. doi: 10.7498/aps.53.2539
    [17] HUANG CHUN-JIA, LI JIANG-FAN, HE HUI-YONG. QUANTUM PROPERTIES OF LIGHT OF SQUEEZED VACUUM FIELD RAMAN INTERACTING WITH TWO COUPLED ATOMS. Acta Physica Sinica, 2001, 50(3): 473-477. doi: 10.7498/aps.50.473
    [18] FENG JIAN, WANG JI-SUO, GAO YUN-FENG, ZHAN MING-SHENG. INFLUENCE OF NONLINEARITIES OF BOTH THE FIELD AND THE INTENSITY-DEPENDENT ATOM-FIELD COUPLING ON THE EMISSION SPECTRUM OF AN ATOM IN A CAVITY. Acta Physica Sinica, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [19] HUANG CHUN-JIA, ZHOU MING, LI JIANG-FAN, KONG FAN-ZHI. QUANTUM PROPERTIES OF LIGHT IN THE SYSTEM OF TWO-MODE SQUEEZING VACUUM FIELD INTERACTING WITH TWO COUPLING-ATOMS. Acta Physica Sinica, 2000, 49(11): 2159-2164. doi: 10.7498/aps.49.2159
    [20] OU FA, WEI BAO-HUA, LIU CUI-HONG. MEAN FIELD THEORY OF CRITICAL PHENOMENA IN INCREASING ABSORPTION OPTICAL BISTABILITY. Acta Physica Sinica, 1994, 43(5): 707-716. doi: 10.7498/aps.43.707
Metrics
  • Abstract views:  402
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2025
  • Accepted Date:  23 February 2025
  • Available Online:  27 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回