Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New high-gain micro photovoltaic inverter based on GaN

LIN Yilei YANG Cui WANG Xinhuai MAO Wei GE Chongzhi YU Longyang ZHANG Chunfu ZHANG Jincheng HAO Yue

Citation:

New high-gain micro photovoltaic inverter based on GaN

LIN Yilei, YANG Cui, WANG Xinhuai, MAO Wei, GE Chongzhi, YU Longyang, ZHANG Chunfu, ZHANG Jincheng, HAO Yue
cstr: 32037.14.aps.74.20241798
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microinverters have been widely used in distributed photovoltaic (PV) systems in recent years due to their modularity and flexibility. However, the current development of microinverter topologies faces significant challenges, such as low voltage gain and limited reliability. To solve these problems, an enhanced switched-inductor quasi-Z-Source inverter (ESL-qZSI) based on gallium nitride high electron mobility transistor (GaN HEMT) is proposed in this work. The proposed inverter introduces a novel topology that integrates an auxiliary boost unit with a switched-inductor quasi-Z-source network. This topology significantly enhances the voltage gain at low shoot-through duty ratios and reduces the voltage stress across the switching device. Additionally, the use of GaN HEMT as power switching components increases the switching frequency from the traditional 10 kHz to 100 kHz, in which a specialized negative turn-off gate driver circuit is designed to adapt the characteristics of the GaN HEMT and to ensure reliable switching operation. This increase in frequency reduces the size of passive components, such as inductors. Experimental results show that the proposed inverter achieves a boost factor of 5.75 at a shoot-through duty ratio of 0.2, which indicates that its performance is improved by 15% and 91% greater than the traditional switched-inductor-capacitor quasi-Z-source inverter (SLC-qZSI) and the traditional switched-inductor Z-source inverter (SL-ZSI), respectively. These results confirm that the proposed inverter enhances the voltage gain of existing topologies. Besides, compared with SLC-qZSI, the proposed inverter can obtain a higher efficiency of 90.5%, which shows the advantage of efficiency. In conclusion, the proposed ESL-qZSI with GaN HEMT provides a hopeful solution for high-efficiency and compact microinverter systems in photovoltaic applications.
      Corresponding author: YANG Cui, ycxd503@126.com ; WANG Xinhuai, xinhuaiwang@xidian.edu.cn ; MAO Wei, mwxidian@126.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3604303, 2022YFB3604300) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 62421005).
    [1]

    Hmad J, Houari A, Bouzid A E M, Saim A, Trabelsi H 2023 Energies 16 5062Google Scholar

    [2]

    Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E 2021 Energies 14 5375Google Scholar

    [3]

    Wang Q, Zhao B, Sun H D 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) Wuhan, China, 2020 p1407

    [4]

    Priyadarshi N, Padmanaban S, Ionel D M, Mihet-Popa L, Azam F 2018 Energies 11 2277Google Scholar

    [5]

    Monjo L, Sainz L, Mesas J J, Pedra J 2021 Energies 14 508Google Scholar

    [6]

    Peng F Z 2003 IEEE Trans. Ind. Appl. 39 504Google Scholar

    [7]

    Yuan J, Yang Y H, Blaabjerg F 2020 Energies 13 1390Google Scholar

    [8]

    Samanbakhsh R, Koohi P, Ibanez F M, Martin F, Terzija V 2023 Int. J. Electr. Power Energy Syst. 147 108819Google Scholar

    [9]

    Li Y, Anderson J, Peng F Z, Liu D C 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition Washington, DC, USA, 2009 p918

    [10]

    Rajan V R, Premalatha L 2017 Int. J. Power Electron. Drive Syst. 8 325Google Scholar

    [11]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circuits Syst. Regul. Pap. 55 687Google Scholar

    [12]

    刘洪臣, 杨爽, 王国立, 李飞 2013 物理学报 62 150505Google Scholar

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505Google Scholar

    [13]

    Zhu M, Yu K, Luo F L 2010 IEEE Trans. Power Electron. 25 2150Google Scholar

    [14]

    Nguyen M K, Lim Y C, Cho G B 2011 IEEE Trans. Power Electron. 26 3183Google Scholar

    [15]

    Zhu X Q, Zhang B, Qiu D Y 2018 IET Power Electron. 11 1774Google Scholar

    [16]

    Karbalaei A R, Mardaneh M 2021 IEEE Ind. Electron. Mag. 15 4Google Scholar

    [17]

    Bolaghi J A, Taheri A, Babaei M H, Gholami M, Harajchi S 2023 IETE J. Res. 70 4231Google Scholar

    [18]

    Chaudhary O S, Denaï M, Refaat S S, Pissanidis G 2023 Energies 16 6689Google Scholar

    [19]

    Zhang Y J, Li J G, Wang J H, Zheng T Q, Jia P Y 2022 Energies 15 7791Google Scholar

    [20]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [21]

    王帅, 葛晨, 徐祖银, 成爱强, 陈敦军 2024 物理学报 73 177101Google Scholar

    Wang S, Ge C, Xu Z Y, Cheng A Q, Chen D J 2024 Acta Phys. Sin. 73 177101Google Scholar

    [22]

    Morita T, Tamura S, Anda Y, Ishida M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2011 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Fort Worth, TX, USA, 2011 p481

    [23]

    Zhao C W, Trento B, Jiang L, Jones E A, Liu B, Zhang Z Y, Costinett D, Wang F, Tolbert L M, Jansen J F, Kress R, Langley R 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 824Google Scholar

    [24]

    Jagan V, Ullemgondla G, Thati D, Salveru B, Ongole D, Banoth S 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, 2024 p475

    [25]

    谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510Google Scholar

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510Google Scholar

    [26]

    廖志贤, 罗晓曙, 黄国现 2015 物理学报 64 130503Google Scholar

    Liao Z X, Luo X S, Huang G X 2015 Acta Phys. Sin. 64 130503Google Scholar

    [27]

    易龙强, 郜克存 2008 电力电子技术 42 50Google Scholar

    Yi L Q, Gao K C 2008 Power Electron. 42 50Google Scholar

  • 图 1  ESL-qZSI拓扑

    Figure 1.  ESL-qZSI topology.

    图 2  ESL-qZSI拓扑的直通模态等效电路

    Figure 2.  Equivalent circuits of ESL-qZSI topology in shoot-through states.

    图 3  ESL-qZSI拓扑的非直通模态等效电路

    Figure 3.  Equivalent circuits of ESL-qZSI topology in nonshoot-through states.

    图 4  不同拓扑升压能力对比 (a)升压因子B; (b)电压增益G

    Figure 4.  Boosting capability comparison of different topologies: (a) Boost factor B; (b) voltage gain G

    图 5  不同拓扑开关器件电压应力对比

    Figure 5.  Switching voltage stress comparison of different topologies.

    图 6  负压关断驱动电路

    Figure 6.  Driver circuit with negative voltage turn-off.

    图 7  直流链电压仿真波形

    Figure 7.  Simulation result of DC-link voltage waveform.

    图 8  仿真滤波输出 (a) 电压波形; (b) THD分析

    Figure 8.  Simulation result of filter output: (a) Voltage waveform; (b) analysis of THD.

    图 9  ESL-qZSI电容电压应力仿真结果

    Figure 9.  Capacitor voltage stress simulation results of ESL-qZSI.

    图 10  ESL-qZSI系统测试平台

    Figure 10.  ESL-qZSI system test platform.

    图 11  系统驱动波形

    Figure 11.  Experimental result of system drive waveform.

    图 12  直流链电压实测波形

    Figure 12.  Experimental result of DC-link voltage waveform.

    图 13  逆变器输出电压实测波形

    Figure 13.  Experimental result of inverter output voltage waveform.

    图 14  逆变器输出波形THD分析

    Figure 14.  THD analysis of inverter output voltage.

    表 1  ESL-qZSI拓扑特性

    Table 1.  Characteristics of ESL-qZSI topology.

    参数名称 参数值
    升压因子(B) $ \dfrac{2}{1-4 D+3 D^{2}} $
    电压增益(G) $ \dfrac{2}{3 M-2} $
    开关管电压应力Vsw/Vin $ \dfrac{3 G^{2}}{2 G+2} $
    C1电压应力VC1/Vin $ \dfrac{1}{1-D} $
    C2电压应力VC2/Vin $ \dfrac{1}{1-3 D} $
    C3电压应力VC3/Vin $ \dfrac{2 D}{1-4 D+3 D^{2}} $
    C4电压应力VC4/Vin $ \dfrac{2}{1-3 D} $
    D1/D2电压应力VD/Vin $ \dfrac{2}{1-4 D+3 D^{2}} $
    D3/D4/D5电压应力VD/Vin $ \dfrac{1-D}{1-4 D+3 D^{2}} $
    DownLoad: CSV

    表 2  驱动电路关键参数

    Table 2.  Key parameters of driver circuit.

    参数名称R7R5R4C6/nFC3/nFC4/nF
    参数值470103.331001
    DownLoad: CSV

    表 3  ESL-qZSI实验参数

    Table 3.  Experimental parameters of ESL-qZSI.

    参数名称 参数值
    输入电压/V 64
    开关频率/kHz 100
    准Z源网络电容/μF 100
    准Z源网络电感/mH 0.5
    LC滤波电容/μF 20
    LC滤波电感/mH 1
    直通占空比D 0.2
    基准频率/Hz 50
    DownLoad: CSV

    表 4  不同拓扑的典型结果对比

    Table 4.  Typical results of different inverter topologies.

    参数 逆变器拓扑类型
    SL-ZSI SLC-qZSI ESL-qZSI
    数据类型 样机
    测试结果
    理论
    计算结果
    样机
    测试结果
    样机
    测试结果
    输入电压Vin/V 36 36 80 64
    直通占空比D 0.3 0.2 0.206 0.2
    调制系数M 0.7 0.8 0.794 0.8
    升压因子B 13 3 5 5.75
    开关频率/kHz 10 10 13.3 100
    效率/% 88.5 90.5
    DownLoad: CSV
  • [1]

    Hmad J, Houari A, Bouzid A E M, Saim A, Trabelsi H 2023 Energies 16 5062Google Scholar

    [2]

    Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E 2021 Energies 14 5375Google Scholar

    [3]

    Wang Q, Zhao B, Sun H D 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) Wuhan, China, 2020 p1407

    [4]

    Priyadarshi N, Padmanaban S, Ionel D M, Mihet-Popa L, Azam F 2018 Energies 11 2277Google Scholar

    [5]

    Monjo L, Sainz L, Mesas J J, Pedra J 2021 Energies 14 508Google Scholar

    [6]

    Peng F Z 2003 IEEE Trans. Ind. Appl. 39 504Google Scholar

    [7]

    Yuan J, Yang Y H, Blaabjerg F 2020 Energies 13 1390Google Scholar

    [8]

    Samanbakhsh R, Koohi P, Ibanez F M, Martin F, Terzija V 2023 Int. J. Electr. Power Energy Syst. 147 108819Google Scholar

    [9]

    Li Y, Anderson J, Peng F Z, Liu D C 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition Washington, DC, USA, 2009 p918

    [10]

    Rajan V R, Premalatha L 2017 Int. J. Power Electron. Drive Syst. 8 325Google Scholar

    [11]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circuits Syst. Regul. Pap. 55 687Google Scholar

    [12]

    刘洪臣, 杨爽, 王国立, 李飞 2013 物理学报 62 150505Google Scholar

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505Google Scholar

    [13]

    Zhu M, Yu K, Luo F L 2010 IEEE Trans. Power Electron. 25 2150Google Scholar

    [14]

    Nguyen M K, Lim Y C, Cho G B 2011 IEEE Trans. Power Electron. 26 3183Google Scholar

    [15]

    Zhu X Q, Zhang B, Qiu D Y 2018 IET Power Electron. 11 1774Google Scholar

    [16]

    Karbalaei A R, Mardaneh M 2021 IEEE Ind. Electron. Mag. 15 4Google Scholar

    [17]

    Bolaghi J A, Taheri A, Babaei M H, Gholami M, Harajchi S 2023 IETE J. Res. 70 4231Google Scholar

    [18]

    Chaudhary O S, Denaï M, Refaat S S, Pissanidis G 2023 Energies 16 6689Google Scholar

    [19]

    Zhang Y J, Li J G, Wang J H, Zheng T Q, Jia P Y 2022 Energies 15 7791Google Scholar

    [20]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [21]

    王帅, 葛晨, 徐祖银, 成爱强, 陈敦军 2024 物理学报 73 177101Google Scholar

    Wang S, Ge C, Xu Z Y, Cheng A Q, Chen D J 2024 Acta Phys. Sin. 73 177101Google Scholar

    [22]

    Morita T, Tamura S, Anda Y, Ishida M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2011 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Fort Worth, TX, USA, 2011 p481

    [23]

    Zhao C W, Trento B, Jiang L, Jones E A, Liu B, Zhang Z Y, Costinett D, Wang F, Tolbert L M, Jansen J F, Kress R, Langley R 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 824Google Scholar

    [24]

    Jagan V, Ullemgondla G, Thati D, Salveru B, Ongole D, Banoth S 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, 2024 p475

    [25]

    谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510Google Scholar

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510Google Scholar

    [26]

    廖志贤, 罗晓曙, 黄国现 2015 物理学报 64 130503Google Scholar

    Liao Z X, Luo X S, Huang G X 2015 Acta Phys. Sin. 64 130503Google Scholar

    [27]

    易龙强, 郜克存 2008 电力电子技术 42 50Google Scholar

    Yi L Q, Gao K C 2008 Power Electron. 42 50Google Scholar

Metrics
  • Abstract views:  2308
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2024
  • Accepted Date:  22 February 2025
  • Available Online:  21 March 2025
  • Published Online:  20 May 2025
  • /

    返回文章
    返回