Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles studies of influence of V or W doping on mechanical properties of Mo2C

YANG Zhenggang DOU Erkang YANG Yong LI Tianrui ZHANG Xiaofeng WANG Zhaodong

Citation:

First-principles studies of influence of V or W doping on mechanical properties of Mo2C

YANG Zhenggang, DOU Erkang, YANG Yong, LI Tianrui, ZHANG Xiaofeng, WANG Zhaodong
cstr: 32037.14.aps.74.20250039
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Secondary hardening ultra-high-strength steel is widely utilized in aerospace and other advanced engineering, with the nanoscale M2C precipitates serving as the primary strengthening factor. Mo plays a crucial role in the forming of Mo2C secondary hardening phase, which can form composite M2C precipitates with elements such as Cr, V, and W, thereby modifying the composition and properties of Mo2C. To investigate the effects of V and W doping on Mo2C, first-principles calculations are used to analyze the formation enthalpy, electronic structure, and mechanical properties of the doped systems. The CASTEP module is utilized in this study, with the Perdew-Burke-Ernzerhof (PBE) functional adopted in the generalized gradient approximation (GGA) framework. The results indicate that V doping reduces the lattice parameters and the formation enthalpy, thereby enhancing structural stability. In contrast, W doping increases the lattice parameters and lowers the formation enthalpy but leads the structural stability to decrease. In terms of mechanical properties, V doping reduces toughness while increasing hardness, whereas W doping improves the strength-toughness balance by mitigating the rate of hardness reduction. Covalent bonds are formed within the system, with V and W doping changing their characteristics: compared with the C—Mo bond, the C—V bond exhibits weaker covalency, while the C—W bond displays stronger covalency. Additionally, V doping enhances the stability of Mo—C bonds, whereas W doping reduces their stability. Charge population analysis reveals that metal atoms (Mo, V, and W) act as electron donors, while carbon atoms act as electron acceptors.
      Corresponding author: YANG Yong, yangyongboxian@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52301028), the Anhui Provincial Department of Science and Technology Natural Science Fund, China (Grant No. 2208085QE147), and the Anhui Provincial Department of Education Higher Education Research, China (Grant No. 2022AH050333).
    [1]

    Dahl J M, Novotny P M 1999 Adv. Mater. Processes. 155 23

    [2]

    Speich G R, Leslie W C 1972 Metall. Trans. 3 1043Google Scholar

    [3]

    Garrison W M, Maloney J L 2005 Mater. Sci. Eng. , A 403 299Google Scholar

    [4]

    吴迪 2016 博士学位论文 (秦皇岛: 燕山大学)

    Wu D 2016 Ph. D. Dissertation (Qinhuangdao: Yanshan University

    [5]

    李阿妮, 厉勇, 王春旭, 刘宪民 2007 钢铁 42 60Google Scholar

    Li A N, Li Y, Wang C X, Liu X M 2007 Iron Steel 42 60Google Scholar

    [6]

    王春旭, 张鹏杰, 高远航, 厉勇, 韩顺, 刘少尊 2020 金属热处理 45 7Google Scholar

    Wang C X, Zhang P J, Gao Y H, Li Y, Han S, Liu S Z 2020 Heat Treat. Met. 45 7Google Scholar

    [7]

    Kwon H 1991 Metall. Trans. A 22 1119Google Scholar

    [8]

    Kwon H, Lee K B, Yang H R, Lee J B, Kim Y S 1997 Metall. Mater. Trans. A 28 775Google Scholar

    [9]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1862Google Scholar

    [10]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1659Google Scholar

    [11]

    Speich G R, Dabkowski D S, Porter L F 1973 Metall. Trans. 4 303Google Scholar

    [12]

    Liu X T, Zhou X L, Yang M S 2023 J. Mater. Sci. Mater. Electron. 34 961Google Scholar

    [13]

    Liu H L, Zhu J C, Lai Z H, Zhao R D, He D 2009 Scr. Mater. 60 949Google Scholar

    [14]

    Wang X R, Yan M F 2009 J. Wuhan Univ. Technol. Mater. Sci. Ed. 24 37Google Scholar

    [15]

    Wang X R, Yan M F, Chen H T 2009 J. Mater. Sci. Technol. 25 419Google Scholar

    [16]

    Liu Y Z, Jiang Y H, Zhou R, Liu X F, Feng J 2015 Ceram. Int. 41 5239Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B. 41 7892Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [19]

    Guo J, Feng Y L, Tang C, Wang L, Qing X L, Yang Q X, Ren X J 2022 Materials 15 4719Google Scholar

    [20]

    Abderrahim F Z, Faraoun H I, Ouahrani T 2012 Physica B 407 3833Google Scholar

    [21]

    Luo Y, Cheng C, Chen H J, Liu K, Zhou X L 2019 J. Phys. Condens. Matter 31 405703Google Scholar

    [22]

    Peng M J, Wang R F, Wu Y J, Yang A C, Duan Y H 2022 Vacuum 196 110715Google Scholar

    [23]

    Zhao R D, Wu F F, Liu X, Zhu J C, Zhao Z F 2016 J. Alloys Compd. 681 283Google Scholar

    [24]

    Wu M M, Wen L, Tang B Y, Peng L M, Ding W J 2010 J. Alloys Compd. 506 412Google Scholar

    [25]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [26]

    Yan M, Zhang H, Gong C, Zhang M, Gao Q 2025 J. Phys. Chem. Solids 196 112374Google Scholar

    [27]

    Boucetta S, Zegrar F 2013 J. Magnes. Alloys 1 128Google Scholar

    [28]

    Gao X P, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 587 819Google Scholar

    [29]

    李士明, 张启富, 邱肖盼, 张子月, 仲海峰 2022 材料保护 55 9Google Scholar

    Li S M, Zhang Q F, Qiu X P, Zhang Z Y, Zhong H F 2022 Mater. Prot. 55 9Google Scholar

    [30]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [31]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [32]

    Teter D M 1998 MRS Bull. 23 22Google Scholar

    [33]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1Google Scholar

    [34]

    卢彩彬, 李新梅 2021 科学技术与工程 21 10646Google Scholar

    Lu C B, Li X M 2021 Sci. Techno. Eng. 21 10646Google Scholar

    [35]

    Li Y F, Gao Y M, Fan Z J, Xiao B, Yue Q W, Min T, Ma S Q 2010 Phys. B: Condens. Matter. 405 1011Google Scholar

  • 图 1  晶体结构以及超胞示意图 (a) Mo2C; (b) Mo8C4; (c) Mo7VC4; (d) Mo6V2C4; (e) Mo7WC4; (f) Mo6W2C4

    Figure 1.  Schematic diagram of crystal structure and the supercell: (a) Mo2C; (b) Mo8C4; (c) Mo7VC4; (d) Mo6V2C4; (e) Mo7WC4; (f) Mo6W2C4.

    图 2  不同构型的弹性常数 (a) 弹性模量(B, G, E); (b) 模量比(G/B)和泊松比(ν)

    Figure 2.  Elastic constants of different configurations: (a) Elastic moduli (B, G, E); (b) modulus ratio (G/B) and Poisson’s ratio (ν).

    图 3  5种构型的态密度及各原子分波态密度图 (a) Mo8C4; (b) Mo7VC4; (c) Mo6V2C4; (d) Mo7WC4; (e) Mo6W2C4. (f) 4种掺杂构型的总态密度图

    Figure 3.  Density of states for five configurations and the partial density of states for each atom: (a) Mo8C4; (b) Mo7VC4; (c) Mo6V2C4; (d) Mo7WC4; (e) Mo6W2C4. (f) Total density of states for four doped configurations.

    图 4  不同构型的态密度图 (a) (Mo, V)8C4; (b) (Mo, W)8C4

    Figure 4.  The density of states for different configurations: (a) (Mo, V)8C4; (b) (Mo, W)8C4.

    图 5  未掺杂构型 (a) 差分片段; (b) 差分电荷密度图

    Figure 5.  Undoped configuration: (a) Differential fragment; (b) differential charge density map.

    图 6  差分电荷密度图 (a) Mo7VC4; (b) Mo6V2C4; (c) Mo7WC4; (d) Mo6W2C4

    Figure 6.  Differential charge density maps: (a) Mo7VC4; (b) Mo6V2C4; (c) Mo7WC4; (d) Mo6W2C4.

    表 1  V, W掺杂前后的晶格参数a, b, c, V以及α, β, γ

    Table 1.  Lattice parameters a, b, c, volume V, and angles α, β, γ before and after doping with V and W.

    Configuration a b c V α β γ Volume expansion rate/%
    Mo2C 3.059 3.059 4.665 37.794 90.00 90.00 120.00
    (Mo4C2)[12] 3.056 3.056 9.331 75.476
    (Mo2C)[13] 3.054 3.054 4.652 37.58
    (Mo2C)[15] 3.051 3.051 4.624 37.3114
    Mo8C4 6.108 3.054 9.346 150.996 90.06 89.98 120.00
    Mo7VC4 6.083 3.041 9.282 148.737 90.04 90.02 119.98 –1.50%
    Mo6V2C4 6.051 3.026 9.215 146.201 89.84 90.34 119.96 –3.18%
    Mo7WC4 6.109 3.055 9.350 151.139 90.07 89.96 119.99 0.09%
    Mo6W2C4 6.112 3.054 9.355 151.272 90.09 89.97 119.98 0.18%
    (V2C)[20] 3.045 3.045 4.409 35.4
    (V2C)[21] 2.89
    (W2C)[20] 3.19 3.19 4.626 40.77
    (W2C)[20] 3.060 3.060 4.703
    DownLoad: CSV

    表 2  不同构型的形成焓

    Table 2.  Enthalpy of formation for different configurations.

    Configuration ΔH/(eV·atom–1)
    Mo8C4 –0.131
    (Mo2C)[13] –0.113
    Mo7VC4 –0.192
    Mo6V2C4 –0.264
    Mo7WC4 –0.121
    Mo6W2C4 –0.111
    DownLoad: CSV

    表 3  不同构型的单晶弹性常数

    Table 3.  Single crystal elastic constants of different configurations.

    ConfigurationC11/GPaC12/GPaC13/GPaC33/GPaC44/GPaC66/GPa
    Mo8C4475.26119.88180.55451.77137.69178.17
    Mo7VC4481.10117.69177.65466.54134.82178.91
    Mo6V2C4473.96119.00166.23461.58141.35176.42
    Mo7WC4478.11125.91187.67459.93137.32177.95
    Mo6W2C4483.65131.41196.03468.71137.92178.09
    DownLoad: CSV

    表 4  不同构型的维氏硬度HV, Hardness (Tian)和硬度H

    Table 4.  Vickers hardness (HV), hardness (Tian), and hardness (H) of different configurations.

    ConfigurationHV/GPaHardness/GPaH/GPa
    Mo8C416.6416.5742.79
    Mo7VC416.8417.4643.00
    Mo6V2C418.1218.1341.71
    Mo7WC415.9816.0043.92
    Mo6W2C415.4315.5945.25
    DownLoad: CSV

    表 5  不同构型的弹性各向异性指数(AU, AB, AG)

    Table 5.  Elastic anisotropy indices (AU, AB, AG) of different configurations.

    ConfigurationBV/GPaGV/GPaBR/GPaGR/GPaAUAB/%AG/%
    Mo8C4262.69152.04262.30149.300.09310.07530.9073
    Mo7VC4263.86153.98263.30149.990.13520.10591.3137
    Mo6V2C4256.93155.90256.62153.640.07500.06170.7319
    Mo7WC4268.74151.14268.20148.900.07730.10170.7471
    Mo6W2C4275.88151.23275.17148.980.07790.12950.7472
    DownLoad: CSV

    表 6  不同构型的键布居

    Table 6.  Different configurations of bond population.

    Configuration Bond Number Population Length/Å
    Mo8C4
    C—Mo80.672.1141
    C—Mo80.282.1143
    C—Mo[15]2.118[15]
    Mo7VC4C—Mo70.692.1116
    C—Mo70.282.1131
    C4—V110.172.0367
    C3—V110.602.0380
    Mo6V2C4C—Mo60.732.1057
    C—Mo60.282.1076
    C—V20.592.0420
    C—V20.172.0675
    Mo7WC4C—Mo70.662.1152
    C—Mo70.272.1164
    C4—W110.342.1173
    C3—W110.792.1233
    Mo6W2C4C—Mo60.652.1162
    C—Mo60.262.1187
    C—W20.312.1210
    C—W20.762.1238
    DownLoad: CSV

    表 7  Mo8C4的电荷布居

    Table 7.  Charge distribution of Mo8C4.

    ConfigurationAtomspdfTotal electron/eMuliken charge/e
    Mo8C4Mo2.206.644.860.0013.700.30
    C1.443.160.000.004.60–0.60
    DownLoad: CSV

    表 9  W掺杂Mo8C4的电荷布居

    Table 9.  Charge distribution of W-doped Mo8C4.

    ConfigurationAtomTotal electron/eMuliken charge/eConfigurationAtomTotal electron/eMuliken charge/e
    Mo7WC4Mo113.700.29Mo6W2C4Mo113.700.30
    Mo213.700.31Mo213.700.30
    Mo313.700.29Mo313.720.29
    Mo413.700.30Mo413.720.29
    Mo513.700.30Mo513.660.33
    Mo613.680.32Mo613.660.33
    Mo713.660.33W127.700.29
    W127.840.27W227.700.29
    C14.60–0.60C14.60–0.60
    C24.60–0.60C24.60–0.60
    C34.62–0.61C34.62–0.62
    C44.60–0.61C44.62–0.62
    DownLoad: CSV

    表 8  V掺杂Mo8C4的电荷布居

    Table 8.  Charge distribution of V-doped Mo8C4.

    ConfigurationAtomTotal electron/eMuliken charge/eConfigurationAtomTotal electron/eMuliken charge/e
    Mo7VC4Mo113.760.24Mo6V2C4Mo113.800.20
    Mo213.700.30Mo213.800.20
    Mo313.760.24Mo313.800.21
    Mo413.720.29Mo413.800.20
    Mo513.740.26Mo513.800.21
    Mo613.780.22Mo613.800.20
    Mo713.760.25V112.380.62
    V112.380.63V212.380.62
    C14.60–0.60C14.62–0.61
    C24.60–0.60C24.62–0.61
    C34.62–0.62C34.62–0.62
    C44.62–0.61C44.62–0.61
    DownLoad: CSV
  • [1]

    Dahl J M, Novotny P M 1999 Adv. Mater. Processes. 155 23

    [2]

    Speich G R, Leslie W C 1972 Metall. Trans. 3 1043Google Scholar

    [3]

    Garrison W M, Maloney J L 2005 Mater. Sci. Eng. , A 403 299Google Scholar

    [4]

    吴迪 2016 博士学位论文 (秦皇岛: 燕山大学)

    Wu D 2016 Ph. D. Dissertation (Qinhuangdao: Yanshan University

    [5]

    李阿妮, 厉勇, 王春旭, 刘宪民 2007 钢铁 42 60Google Scholar

    Li A N, Li Y, Wang C X, Liu X M 2007 Iron Steel 42 60Google Scholar

    [6]

    王春旭, 张鹏杰, 高远航, 厉勇, 韩顺, 刘少尊 2020 金属热处理 45 7Google Scholar

    Wang C X, Zhang P J, Gao Y H, Li Y, Han S, Liu S Z 2020 Heat Treat. Met. 45 7Google Scholar

    [7]

    Kwon H 1991 Metall. Trans. A 22 1119Google Scholar

    [8]

    Kwon H, Lee K B, Yang H R, Lee J B, Kim Y S 1997 Metall. Mater. Trans. A 28 775Google Scholar

    [9]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1862Google Scholar

    [10]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1659Google Scholar

    [11]

    Speich G R, Dabkowski D S, Porter L F 1973 Metall. Trans. 4 303Google Scholar

    [12]

    Liu X T, Zhou X L, Yang M S 2023 J. Mater. Sci. Mater. Electron. 34 961Google Scholar

    [13]

    Liu H L, Zhu J C, Lai Z H, Zhao R D, He D 2009 Scr. Mater. 60 949Google Scholar

    [14]

    Wang X R, Yan M F 2009 J. Wuhan Univ. Technol. Mater. Sci. Ed. 24 37Google Scholar

    [15]

    Wang X R, Yan M F, Chen H T 2009 J. Mater. Sci. Technol. 25 419Google Scholar

    [16]

    Liu Y Z, Jiang Y H, Zhou R, Liu X F, Feng J 2015 Ceram. Int. 41 5239Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B. 41 7892Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [19]

    Guo J, Feng Y L, Tang C, Wang L, Qing X L, Yang Q X, Ren X J 2022 Materials 15 4719Google Scholar

    [20]

    Abderrahim F Z, Faraoun H I, Ouahrani T 2012 Physica B 407 3833Google Scholar

    [21]

    Luo Y, Cheng C, Chen H J, Liu K, Zhou X L 2019 J. Phys. Condens. Matter 31 405703Google Scholar

    [22]

    Peng M J, Wang R F, Wu Y J, Yang A C, Duan Y H 2022 Vacuum 196 110715Google Scholar

    [23]

    Zhao R D, Wu F F, Liu X, Zhu J C, Zhao Z F 2016 J. Alloys Compd. 681 283Google Scholar

    [24]

    Wu M M, Wen L, Tang B Y, Peng L M, Ding W J 2010 J. Alloys Compd. 506 412Google Scholar

    [25]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [26]

    Yan M, Zhang H, Gong C, Zhang M, Gao Q 2025 J. Phys. Chem. Solids 196 112374Google Scholar

    [27]

    Boucetta S, Zegrar F 2013 J. Magnes. Alloys 1 128Google Scholar

    [28]

    Gao X P, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 587 819Google Scholar

    [29]

    李士明, 张启富, 邱肖盼, 张子月, 仲海峰 2022 材料保护 55 9Google Scholar

    Li S M, Zhang Q F, Qiu X P, Zhang Z Y, Zhong H F 2022 Mater. Prot. 55 9Google Scholar

    [30]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [31]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [32]

    Teter D M 1998 MRS Bull. 23 22Google Scholar

    [33]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1Google Scholar

    [34]

    卢彩彬, 李新梅 2021 科学技术与工程 21 10646Google Scholar

    Lu C B, Li X M 2021 Sci. Techno. Eng. 21 10646Google Scholar

    [35]

    Li Y F, Gao Y M, Fan Z J, Xiao B, Yue Q W, Min T, Ma S Q 2010 Phys. B: Condens. Matter. 405 1011Google Scholar

  • [1] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [2] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [6] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [7] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [8] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [10] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [15] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] Ru Qiang, Hu She-Jun, Zhao Ling-Zhi. First-principles study of the electronic structure and elastic property of Li x FePO4. Acta Physica Sinica, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [17] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [18] Hou Yu-Qing, Zhang Xiao-Dong, Jiang Zhen-Yi. First-principles calculation of structure, electronic and elastic properties of MAlH4(M=Na, K). Acta Physica Sinica, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] Xu Hong-Bin, Wang Yuan-Xu. First-principles study of low-compressibility of transition-metal Tc and its nitrides TcN,TcN2,TcN3 and TcN4. Acta Physica Sinica, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [20] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
Metrics
  • Abstract views:  405
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2025
  • Accepted Date:  12 February 2025
  • Available Online:  20 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回