Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Co atom embedding depth in impregnated diamond substrate on bonding strength of diamond coating film substrate interface

JIAN Xiaogang ZHANG Tingting TANG Wenjie

Citation:

Influence of Co atom embedding depth in impregnated diamond substrate on bonding strength of diamond coating film substrate interface

JIAN Xiaogang, ZHANG Tingting, TANG Wenjie
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Diamond coating has many excellent properties such as extreme hardness, high elastic modulus, high thermal conductivity, low friction coefficient, low thermal expansion coefficient, and good corrosion resistance. Those properties are close to natural diamond’s, thereby making the diamond coating an ideal new type of wear-resistant tool coating material. However, a large number of experiments have proved that during the deposition of diamond coating, the bonding phase cobalt on the surface of impregnated diamond substrate will generate a layer of graphite at the interface, which seriously weakens the adhesive strength between the substrate and the coating. To thoroughly solve this problem, it is necessary to investigate the microscopic process of graphitization caused by the Co element embedded on the substrate surface. Therefore, the first principle theory is adopted to simulate and analyze the interfacial adhesive strength of diamond coating when Co atom is embedded at different depths on the surface of impregnated diamond substrate, thereby exploring the mechanism of the influence of bonding phase Co element in the substrate on the diamond coating and the mechanism of Co promoting diamond graphitization. The calculation results show that the interfacial binding energy first decreases and then increases with the increase of Co embedding depth in the substrate. When Co atom is embedded in the third layer, obvious graphite structures are prone to appear at the interface, and Co promotes diamond graphitization most significantly, resulting in the minimum bonding strength between the film and substrate interface. The results of structure and charge indicate that under the influence of surface effect and Co—C bond length, the C atoms in the second layer of the substrate move to the first layer and the hybridization mode changes from sp3 to sp2. Meanwhile, this movement leads to an increase in the interaction space and quantity between Co atoms and the surrounding C atoms. In addition, there are many unpaired electrons in the Co valence layer, which can easily mix and rearrange electron orbitals with the surrounding C atoms, ultimately resulting in a graphite structure on the substrate surface. When Co atoms are embedded in the fifth layer, the stable configuration of the substrate surface and the interfacial adhesive strength are no longer affected.
  • 图 1  孕镶金刚石基底金刚石涂层膜基界面建模流程

    Figure 1.  Interfacial modeling process between impregnated diamond substrate and diamond coating.

    图 2  Co原子嵌入不同深度的孕镶金刚石基底模型

    Figure 2.  Impregnated diamond substrate models with Co atom doped in different depths.

    图 3  孕镶金刚石基底金刚石涂层膜基界面模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Figure 3.  Interface model between impregnated diamond substrate and diamond coating: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) without Co atom.

    图 4  结构优化后的孕镶金刚石基底模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Figure 4.  Impregnated diamond substrate model after structural optimization: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) no Co atom.

    图 5  Co在第3层的基底结构

    Figure 5.  Substrate structure when Co is doped in the third layer.

    图 6  结构优化后的孕镶金刚石基底和金刚石涂层的界面模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Figure 6.  Interface model between impregnated diamond substrate and diamond coating after structural optimization: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) no Co atom.

    图 7  基底差分电荷密度图 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层

    Figure 7.  Differential charge density of substrate: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer.

    图 8  基底中Co与成键C原子的部分态密度图 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层    

    Figure 8.  Partial density of states of Co and bonded C atoms in the substrate: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer.

    表 1  不同原子层数金刚石表面结构优化后的层间距变化

    Table 1.  Variation of layer spacing after structural optimization of diamond models with different numbers of atomic layers.

    原子层数/N层间距变化/%
    ${\varDelta _{12}}$${\varDelta _{23}}$${\varDelta _{34}}$${\varDelta _{45}}$${\varDelta _{56}}$${\varDelta _{67}}$
    3–10.852
    5–11.1424.606
    7–10.7164.643–0.429
    9–10.7084.643–0.7010.933
    11–10.7014.688–0.7020.8250.472
    13–10.7184.688–0.7040.8620.330–0.613
    DownLoad: CSV

    表 2  Co原子嵌入不同深度的孕镶金刚石基底/金刚石涂层界面结合能

    Table 2.  Interface binding energy of impregnated diamond substrates with Co atoms doped in different depths /diamond coating.

    基底中Co位置Eslab1/eVEslab2/eVEinterface/eVA2Wad/(J·m–2)
    表面第1层–10822.680–9874.157–20740.52856.90312.302
    表面第2层–10824.324–20739.00411.410
    表面第3层–10820.914–20725.5278.575
    表面第4层–10816.048–20735.41712.730
    表面第5层–10816.702–20738.24513.342
    不含Co–9879.266–19801.20613.454
    DownLoad: CSV

    表 3  Co位于第3层的原子布居数

    Table 3.  Atomic population when Co is doped in the third layer.

    Atom Muliken atomic populations Total electron/e Transfer charge/e
    s p d
    Co 0.05 –0.77 7.79 7.06 1.94
    C(1) 1.32 2.82 0.00 4.14 –0.14
    C(2) 1.19 2.91 0.00 4.10 –0.10
    C(3) 1.22 2.94 0.00 4.15 –0.15
    C(4) 1.18 3.00 0.00 4.17 –0.17
    C(5) 1.22 2.94 0.00 4.15 –0.15
    C(6) 1.18 2.91 0.00 4.10 –0.10
    C(7) 1.22 2.90 0.00 4.12 –0.12
    C(8) 1.17 3.04 0.00 4.20 –0.20
    C(9) 1.17 3.04 0.00 4.20 –0.20
    DownLoad: CSV

    表 4  Co位于第3层的化学键布居数

    Table 4.  Bond population when Co is doped in the third layer.

    Bond Population Length/Å
    Co—C(1) –0.22 1.94970
    Co—C(2) –0.22 2.02913
    Co—C(3) –0.31 1.93623
    Co—C(4) –0.19 1.98079
    Co—C(5) –0.13 1.93626
    Co—C(6) –0.22 2.02911
    Co—C(7) 0.41 2.07074
    Co—C(8) 0.34 1.88913
    Co—C(9) 0.34 1.88915
    DownLoad: CSV
  • [1]

    Yan B, He N, Chen N, Weigold M, Chen H W, Sun S C, Wu Y, Fu S Y, Li L, Abele E 2025 Int. J. Extrem. Manuf. 7 015106Google Scholar

    [2]

    Du Y F, Xie F M, Wang J, Xu B, Chen H Y, Yan B N, Wu Y J, Huang W F, Li H 2023 Materials 16 3640Google Scholar

    [3]

    Wheeler D W, Wood R J K 2024 Wear 556-557 205488Google Scholar

    [4]

    简小刚, 张允华 2015 物理学报 64 046701Google Scholar

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701Google Scholar

    [5]

    Wang X L, Wu X, Lu K, Ye J W 2025 Diam. Relat. Mater. 152 111886.Google Scholar

    [6]

    Liu X W, Zhang H, Lin G L, Wang Z G, Zhang J L, Shi H Y 2023 Vacuum 217 112562Google Scholar

    [7]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li G H, Jia X Y, Liu L S, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [8]

    Li X J, He L L, Li Y S, Yang Q 2019 Surf. Coat. Technol. 360 20Google Scholar

    [9]

    Saiki Y, Bando T, Harigai T, Takikawa Hirofumi, Hattori T, Sugita H, Kawahara, N, Tanaka K 2023 Diam. Relat. Mater. 132 109643Google Scholar

    [10]

    Qiao Y, Nie S Y, Li W H, Liu E Z, Wang X C 2023 Appl. Surf. Sci. 633 157589Google Scholar

    [11]

    Sedov V, Martyanov A, Ashkinazi E, Tiazhelov I, Savin Se, Sovyk D, Mandal S, Fedorov S, Grigoriev S, Ralchenko V 2023 Surf. Interfaces 38 102861

    [12]

    简小刚, 陈军 2015 物理学报 64 216701Google Scholar

    Jian X G, Chen J 2015 Acta Phys. Sin. 64 216701Google Scholar

    [13]

    Sarangi S K, Chattopadhyay A, Chattopadhyay A K 2008 Appl. Surf. Sci. 254 3721Google Scholar

    [14]

    Hu J B, Jian X G 2022 Mod. Phys. Lett. B 36 2250086

    [15]

    范舒瑜, 匡同春, 林松盛, 代明江 2023 材料导报 37 28Google Scholar

    Fan S Y, Kuang T C, Lin S S, Dai M J 2023 Mater. Rep. 37 28Google Scholar

    [16]

    Donnet J B, Paulmier D, Oulanti H 2004 Carbon 42 2215Google Scholar

    [17]

    Lloret F, Soto B, Rouzbahani R, Gutiérrez M, Haenen K, Araujo D 2023 Diam. Relat. Mater. 133 109746Google Scholar

    [18]

    Zhu P, Zhang Q, Xia Y X, Ma Y F, Gou H S, Liang X, Wu G H 2024 Mater. Today Phys. 48 101563Google Scholar

    [19]

    Hu J B, Jian X G, Yang T, Peng X Y 2022 Diam. Relat. Mater. 123 108864Google Scholar

    [20]

    Bi K, Liu J, Dai Q X 2012 Appl. Surf. Sci. 258 4581Google Scholar

    [21]

    Pang X Z, Yang X Y, Yang J B, Zhao Y J, Pang M J 2021 Diam. Relat. Mater. 113 108297Google Scholar

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [25]

    Jin S S, You Z Y, Han P D, Jiang A X, Sun C L, Wang L B, Zhang T, Liu S L 2024 Comput. Mater. Sci. 244 113235Google Scholar

  • [1] ZHEN Jiapeng, GUO Silin, ZHANG Danping, GONG Renfeng, XIANG Ziqiang, LYU Kehong, QIU Jing, LIU Guanjun. Channel analysis model and current hypersensitivity characteristics of diamondene-based transistor. Acta Physica Sinica, doi: 10.7498/aps.74.20250009
    [2] Zhu Yi-Heng, Zhu Zhi-Guang, Chen Cheng-Ke, Jiang Mei-Yan, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.73.20231064
    [3] Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.73.20240515
    [4] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, doi: 10.7498/aps.72.20221942
    [5] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, doi: 10.7498/aps.71.20211981
    [6] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, doi: 10.7498/aps.68.20190350
    [7] Jian Xiao-Gang, Zhang Yun-Hua. The effect of temperature on the mechanical properties of the diamond coating at the film-substrate interface. Acta Physica Sinica, doi: 10.7498/aps.64.046701
    [8] Jian Xiao-Gang, Chen Jun. The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate. Acta Physica Sinica, doi: 10.7498/aps.64.216701
    [9] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, doi: 10.7498/aps.61.058102
    [10] Wang Lin-Jun, Liu Jian-Min, Su Qing-Feng, Shi Wei-Min, Xia Yi-Ben. Electrical properties of alpha-particle detectors based on CVD diamond films. Acta Physica Sinica, doi: 10.7498/aps.55.2518
    [11] Ouyang Xiao-Ping, Wang Lan, Fang Ru-Yu, Zhang Zhong-Bing, Wang Wei, Lü Fan-Xiu, Tang Wei-Zhong, Cheng Guang-Chao. Preparation of diamond-film based radiation detector. Acta Physica Sinica, doi: 10.7498/aps.55.2170
    [12] Li Jun-Jie, Wu Han-Hua, Long Bei-Yu, Lü Xian-Yi, Hu Chao-Quan, Jin Zeng-Sun. The effect of nitrogen-implantation on the field-emission properties of CVD diamond films. Acta Physica Sinica, doi: 10.7498/aps.54.1447
    [13] Liu Cun-Ye, Liu Chang. Microscopic structure studies on the diamond films fabricated by chemical vapor deposition method. Acta Physica Sinica, doi: 10.7498/aps.52.1479
    [14] . Acta Physica Sinica, doi: 10.7498/aps.51.347
    [15] KONG GHUN-YANG, WANG WAN-LU, LIAO KE-JUN, MA YONG, WANG SHU-XIA, FANG LIANG. THE MAGNETORESISTIVE EFFECT OF p-TYPE SEMICONDUCTING DIAMOND FILMS. Acta Physica Sinica, doi: 10.7498/aps.50.1616
    [16] LIAO KE-JUN, WANG WAN-LU, FENG BIN. NUCLEATION AND INITIAL GROWTH OF DIAMOND BY BIASED HOT FILAMENT CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.47.514
    [17] LIAO KE-JUN, WANG WAN-LU. FRACTURE STRENGTH STUDIES OF POLYCRYSTALLINE DIAMOND FILMS PRODUCED BY DC PLASMA CVD. Acta Physica Sinica, doi: 10.7498/aps.43.1559
    [18] GAO QIAO-JUN, LIN ZENG-DONG. PHYSICAL MECHANISM OF SYNTHESIZED DIAMOND FILMS ON THE SUBSTRATE OF A STRONG CARBIDE FORMING ELEMENT. Acta Physica Sinica, doi: 10.7498/aps.41.798
    [19] GAO QIAO-JUN, WANG SHENG-QIANG, LIN TING, HU YI-FEI, LIN ZENG-DONG. A STUDY OF COVER-DEPOSITION CHROMIUM ON DIAMOND AND GRAPHITE SINGLE CRYSTAL SURFACES. Acta Physica Sinica, doi: 10.7498/aps.39.121-2
    [20] LIU GUANG-ZHAO. THE POSSIBILITY OF THE CRYSTALLIZATION OF METASTABLE GRAPHITE FROM MOLTEN METAL SOLUTIONS UNDER THE STABLE CONDITIONS OF DIAMOND. Acta Physica Sinica, doi: 10.7498/aps.28.334
Metrics
  • Abstract views:  263
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2025
  • Accepted Date:  27 February 2025
  • Available Online:  21 March 2025

/

返回文章
返回