Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic vapor cells with Herriott-cavity sealed under vacuum and their applications in atomic magnetometry

XIE Ziping HAO Chuanpeng SHENG Dong

Citation:

Atomic vapor cells with Herriott-cavity sealed under vacuum and their applications in atomic magnetometry

XIE Ziping, HAO Chuanpeng, SHENG Dong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we build a vacuum system that enables the sealing of the mulipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact the silicon wafer which is bonded with a Herriott-cavity. Then the cavity part and the glass part are sealed together using the anodic bonding technique. The resulting vapor cells provide enhanced measurement sensitivity and improved device standardization, which allows for seamless replacements of each other in practical applications. The performances of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz1/2 is achieved in a frequency range from 10 to 20 Hz with a multipass cell filled with 400 Torr N2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.
  • 图 1  光在本文设计的多反射腔内传播示意图, 两个腔镜键合在一片硅片上形成多反射腔模块, 硅片厚度为0.5 mm, 尺寸为21 mm × 33 mm

    Figure 1.  Illustration of the light propagation in the multipass cavity made in this paper, the two cavity mirrors are bonded on a piece of silicon wafer, whose dimension is 0.5 mm × 21 mm × 33 mm.

    图 2  含腔气室真空封装装置 (a) 真空封装腔体简图, a1和a2为1号和2号一维位移台, a3为二维位移台; (b) 铷原子充入部分, b1为加热区域(此处内侧有放置加热片的空槽), b2为尼龙隔热层, b3为玻璃罩放置平台, b4为自制碱金属原子源, b5为碱金属原子源尾管, 之后用被撞击碎开; (c) 阳极键合封装部分, c1为用于撞击b5的刀片, c2为陶瓷绝缘层, c3为含加热片的陶瓷层, c4为导热铜块, c5为与b3相同

    Figure 2.  Setup for vacuum-sealing the vapor cell with a multipass cavity: (a) Schematic diagram of the main vacuum chamber, a1 and a2 are No. 1 and No. 2 one-dimensional displacement stages, a3 is two-dimensional displacement stage; (b) atom filling part, b1 is the place to put a heater, b2 is nylon insulation layer, b3 is the platform for the glass container, b4 is the home-made atom source, b5 is the bottom part of the atom source, which is to be broken later in the process; (c) anodic bonding and packaging part, c1 is blade, c2 is ceramic insulation layer, c3 is ceramic insulation layer with a heater, c4 is copper, c5 is the same as b3.

    图 3  利用含400 Torr N2和自然丰度Rb原子气室得到的在Rb D1线跃迁线附近的吸收光谱, 空心点为实验数据, 实线为(2)式的拟合结果, 内嵌图为气室的照片

    Figure 3.  The light absorption spectrum of Rb atoms near D1 line using an atomic vapor cell filled with 400 Torr N2 and Rb atoms of natural abundance, the dots are the experimental data, and the line is the fitting result, the inset is the picture of the cell.

    图 4  碱金属原子磁光双共振磁力仪实验装置图, 其中探测光通过单模保偏光纤耦合到磁屏蔽内层的磁力仪探头上

    Figure 4.  A schematic plot of the double-resonance magnetometer setup, and the probe beam is fiber coupled to the sensor head inside the magnetic shields.

    图 5  (a)原子磁力仪的响应曲线及采用(7)式和(8)式函数拟合的结果; (b) 磁力仪系统灵敏度, 数据已经过磁力仪的频率响应修正

    Figure 5.  (a) Experiment and fitting results of the magnetometer responses; (b) the field sensitivity of the double-resonance magnetometer, where the results have been corrected using the frequency responses of the magnetometer.

  • [1]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [2]

    Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A, Moreland J 2004 Appl. Phys. Lett. 85 1460Google Scholar

    [3]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [4]

    Budker D, Kimball D F J 2013 Optical Magnetometry (Cambridge: Cambridge University Press

    [5]

    Budker D, Romalis M 2007 Nat. Phys. 3 227Google Scholar

    [6]

    Knappe S, Velichansky V, Robinson H G, Kitching J, Hollberg L 2003 Rev. Sci. Instrum. 74 3142Google Scholar

    [7]

    Liew L A, Knappe S, Moreland J, Robinson H, Hollberg L, Kitching J 2004 Appl. Phys. Lett. 84 14 2694

    [8]

    Mhaskar R, Knappe S, Kitching J 2012 Appl. Phys. Lett. 101 241105Google Scholar

    [9]

    Guo Q Q, Hu T, Feng X Y, Zhang M K, Chen C Q, Zhang X, Yao Z K, Xu J Y, Wang Q, Fu F Y, Zhang Y, Chang Y, Yang X D 2023 Chin. Phys. B 32 040702Google Scholar

    [10]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 657Google Scholar

    [11]

    Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B, Guo H 2020 Sci. Adv. 6 aba8792Google Scholar

    [12]

    Gavazzi B, Bertrand L, Munschy M, Mercier de Lépinay J, Diraison M, Géraud Y 2020 J. Geophys. Res. Sol. Ea. 125 e2019JB018870Google Scholar

    [13]

    Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W, Phillips J D, Ruder M E 2005 75th Anniversary: The Historical Development of the Magnetic Method in Explorationhistorical Development of Magnetic Method Geophysics 70 33ND

    [14]

    Pollinger A, Lammegger R, Magnes W, Hagen C, Ellmeier M, Jernej I, Leichtfried M, Kürbisch C, Maierhofer R, Wallner R, Fremuth G, Amtmann C, Betzler A, Delva M, Prattes G, Baumjohann W 2018 Meas. Sci. Technol. 29 095103Google Scholar

    [15]

    Dougherty M K, Khurana K K, Neubauer F M, Russell C T, Saur J, Leisner J S, Burton M E 2006 Science 311 1406Google Scholar

    [16]

    Afach S, Buchler B C, Budker D, Dailey C, Derevianko A, Dumont V, Figueroa N L, Gerhardt I, Grujić Z D, Guo H, Hao C P, Hamilton P S, Hedges M, Kimball D F J, Kim D, Khamis S, Kornack T, Lebedev V, Lu Z T, Roig H M, Monroy M, Padniuk M, Palm C A, Park S Y, Paul K V, Penaflor A, Peng X, Pospelov M, Preston R, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Sheng D, Shin Y C, Smiga J A, Stalnaker J E, Sulai I, Tandon D, Wang T, Weis A, Wickenbrock A, Wilson T, Wu T, Wurm D, Xiao W, Yang Y C, Yu D R, Zhang J W 2021 Nat. Phys. 17 1396Google Scholar

    [17]

    Sachdeva N, Fan I, Babcock E, Burghoff M, Chupp T E, Degenkolb S, Fierlinger P, Haude S, Kraegeloh E, Kilian W, Knappe-Grüneberg S, Kuchler F, Liu T, Marino M, Meinel J, Rolfs K, Salhi Z, Schnabel A, Singh J T, Stuiber S, Terrano W A, Trahms L, Voigt J 2019 Phys. Rev. Lett. 123 143003Google Scholar

    [18]

    Li S, Vachaspati P, Sheng D, Dural N, Romalis M V 2011 Phys. Rev. A 84 061403Google Scholar

    [19]

    Sheng D, Li S, Dural N, Romalis M V 2013 Phys. Rev. Lett. 110 160802Google Scholar

    [20]

    Yuan L L, Huang J, Fan W F, Wang Z, Zhang K, Pei H Y, Cai Z, Gao H, Liu S X, Quan W 2023 Measurement 217 113043Google Scholar

    [21]

    Sheng D, Kabcenell A, Romalis M V 2014 Phys. Rev. Lett. 113 163002Google Scholar

    [22]

    Wang T Y, Peng J P, Li J L, Liu Z C, Mao Y K 2024 Sensor. Actuat. A Phys. 374 115461Google Scholar

    [23]

    Silver J A 2005 Appl. Opt. 44 6545Google Scholar

    [24]

    Cai B, Hao C P, Qiu Z R, Yu Q Q, Xiao W, Sheng D 2020 Phys. Rev. A 101 053436Google Scholar

    [25]

    蔡波 2020 博士学位论文 (合肥: 中国科学技术大学)

    Cai B 2020 Ph. D. Dissertation ( Hefei: University of Science and Technology of China

    [26]

    Cai B, Sheng D 2019 CN Patent CN110187296A [蔡波, 盛东 2019 CN110187296A]

    Cai B, Sheng D 2019 CN Patent CN110187296A

    [27]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [28]

    Kluttz K A, Averett T D, Wolin B A 2013 Phys. Rev. A 87 032516Google Scholar

    [29]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [30]

    Brossel J, Bitter F 1952 Phys. Rev. 86 308Google Scholar

    [31]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon Press) pp44-46

    [32]

    Xiao Y, Novikova I, Phillips D F, Walsworth R L 2006 Phys. Rev. Lett. 96 043601Google Scholar

    [33]

    Lucivero V G, McDonough N D, Dural N, Romalis M V 2017 Phys. Rev. A 96 062702Google Scholar

    [34]

    Smullin S J, Savukov I M, Vasilakis G, Ghosh R K, Romalis M V 2009 Phys. Rev. A 80 033420Google Scholar

    [35]

    Yu Q Q, Liu S Q, Wang X K, Sheng D 2023 Phys. Rev. A 107 043110Google Scholar

    [36]

    Mathur B, Tang H, Happer W 1968 Phys. Rev. 171 11Google Scholar

    [37]

    Liu Y, Peng X, Wang H D, Wang B W, Yi K W, Sheng D, Guo H 2022 Opt. Lett. 47 5252Google Scholar

    [38]

    Hao C P, Yu Q Q, Yuan C Q, Liu S Q, Sheng D 2021 Phys. Rev. A 103 053523Google Scholar

  • [1] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, doi: 10.7498/aps.71.20212204
    [2] Huang Wen-Yi, Yang Bao-Dong, Fan Jian, Wang Jun-Min, Zhou Hai-Tao. Coherent blue light enhancement via repumping laser in cesium vapor. Acta Physica Sinica, doi: 10.7498/aps.71.20220480
    [3] Yu Zai-Yang, Zheng Jin-Tao, Zhang Yang, Wang Zhi-Guo, Sun Hui, Xiong Zhi-Qiang, Luo Hui. Asymmetry of EPR signal response in nuclear magnetic resonance gyroscope. Acta Physica Sinica, doi: 10.7498/aps.71.20220775
    [4] Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo. Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.71.20221618
    [5] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.71.20211122
    [6] Zhang Lu-Lu, Bai Le-Le, Yang Yu-Lin, Yang Yong-Biao, Wang Yan-Hua, Wen Xin, He Jun, Wang Jun-Min. Improving the sensitivity of an optically pumped rubidium atomic magnetometer by using of a repumping laser beam. Acta Physica Sinica, doi: 10.7498/aps.70.20210920
    [7] Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua. Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.68.20190868
    [8] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, doi: 10.7498/aps.68.20181872
    [9] Zhang Jun-Hai, Wang Ping-Wen, Han Yu, Kang Chong, Sun Wei-Min. Theory of atomic vector magnetometer using linearly polarized resonant light. Acta Physica Sinica, doi: 10.7498/aps.67.20172108
    [10] Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. Acta Physica Sinica, doi: 10.7498/aps.66.160701
    [11] Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping. Research on an pump-probe rubidium magnetometer. Acta Physica Sinica, doi: 10.7498/aps.65.210702
    [12] Gu Yuan, Shi Rong-Ye, Wang Yan-Hui. study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.63.110701
    [13] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, doi: 10.7498/aps.63.020702
    [14] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.62.133201
    [15] Gao Feng, Chang Hong, Wang Xin-Liang, Tian Xiao, Zhang Shou-Gang. The theoretical and experimental investigation of repumping laser impact on cooling and trapping of strontium atoms. Acta Physica Sinica, doi: 10.7498/aps.60.050601
    [16] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, doi: 10.7498/aps.60.114207
    [17] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.59.877
    [18] Zong Nan, Cui Da-Fu, Li Cheng-Ming, Peng Qin-Jun, Xu Zu-Yan, Qin Li, Li Te, Ning Yong-Qiang, Yan Chang-Ling, Wang Li-Jun. Numerical simulation of intracavity second harmonic generation for optically pumped semiconductor vertical-external-cavity surface-emitting lasers. Acta Physica Sinica, doi: 10.7498/aps.58.3903
    [19] Feng Xun-Li, Xu Zhi-Zhan, Xia Yu-Xing. . Acta Physica Sinica, doi: 10.7498/aps.49.235
    [20] YANG FENG, LIU SHU-QIN, DONG TAI-QIAN. OPTICAL PUMPING OF 87Rb ATOMS USING 85Rb LAMP. Acta Physica Sinica, doi: 10.7498/aps.33.116
Metrics
  • Abstract views:  295
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2025
  • Accepted Date:  13 April 2025
  • Available Online:  23 April 2025

/

返回文章
返回