Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy transport analysis of subsonic jet based on hydro-acoustic mode decomposition

HAN Shuaibin LUO Yong LI Hu WANG Yimin WU Conghai

Citation:

Energy transport analysis of subsonic jet based on hydro-acoustic mode decomposition

HAN Shuaibin, LUO Yong, LI Hu, WANG Yimin, WU Conghai
cstr: 32037.14.aps.74.20250353
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In the near-field of a subsonic jet, complex energy transport and transformation processes occur between kinetic energy, thermal energy, and acoustic energy, which play a crucial role in jet instability and noise radiation. Accurately characterizing the transport features of each energy component is essential for developing effective noise suppression technologies. According to Myers’ exact energy equation for total disturbances in arbitrary steady flow [1991 J. Fluid Mech. 226 383], the present study develops a modified energy equation based on hydro-acoustic mode decomposition to separate the contributions of vortical, entropic, and acoustic modes to the total disturbance energy. The method begins with the decomposition formulas for velocity, pressure, and density, following the hydro-acoustic mode decomposition method proposed by Han et al. [2023 Phys. Fluids 35 076107]. In Myers’ energy equation framework, the disturbances of primitive variables (velocity, pressure, and density) are expressed as linear combinations of their vortical, entropic, and acoustic components. With this formula, the vortical (entropic, acoustic) energy is defined as being contributed only by the disturbance of the corresponding mode, while the nonlinear energy is attributed to interaction between vortical, entropic, and acoustic components. This approach yields a modified energy equation capable of distinguishing the individual contributions of vortical, entropic, and acoustic modes to both total disturbance energy and energy flux, thus making it particularly suitable for analyzing energy transport characteristics in the near flow field. The developed equation is used to analyze a subsonic jet with a Mach number of 0.9, revealing different spatial distributions and transport mechanisms of hydrodynamic energy and acoustic energy. The results indicate that vortical energy and entropic energy are mainly concentrated in the near-field, convecting downstream at a velocity about 0.8 times the jet velocity. In contrast, acoustic energy exhibits dual propagation characteristics: it radiates outward to the far field through acoustic waves outside the potential core, while propagating upstream through trapped waves inside the potential core. The energy related to multi-mode nonlinear interactions is mainly concentrated in the jet wake and propagates without obvious directionality. The total disturbance energy is mainly contributed by vortical energy, while the acoustic energy only accounts for a small part of the total disturbance energy, approximately 10–3 of the total. This refined analysis provides deeper insights into the complex energy dynamics in subsonic jets and valuable information for predicting and controlling jet noise strategies. The modified energy equation provides a robust framework for understanding and quantifying the intricate energy transport processes in jet flows.
      Corresponding author: LUO Yong, luo.phd@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202474, 12372257, 12172374).
    [1]

    Viswanathan K 2024 Int. J. Aeroacoust. 23 184Google Scholar

    [2]

    Jordan P, Gervais Y 2008 Exp. Fluids 44 1

    [3]

    李晓东, 徐希海, 高军辉, 何敬玉 2018 空气动力学学报 36 398

    Li X D, Xu X H, Gao J H, He J Y 2018 Acta Aerodyn. Sin. 36 398

    [4]

    Chu B T 1965 Acta Mech. 1 215Google Scholar

    [5]

    Tam C K W, Viswanathan K, Ahuja K K, Panda J 2008 J. Fluid Mech. 615 253Google Scholar

    [6]

    Tam C K W 2019 Philos. Trans. R. Soc. London, Ser. A 377 20190078

    [7]

    Obrist D 2011 Phys. Fluids 23 024901

    [8]

    Cavalieri A, Jordan P, Lesshafft L 2019 Appl. Mech. Rev. 71 020802Google Scholar

    [9]

    Cavalieri A, Rodriguez D, Jordan P, Colonius T, Gervais Y 2013 J. Fluid Mech. 730 559Google Scholar

    [10]

    Papamoschou D 2018 Int. J. Aeroacoust. 17 52Google Scholar

    [11]

    Jordan P, Daviller G, Comte P 2013 J. Sound Vib. 332 3924Google Scholar

    [12]

    Doak P 1989 J. Sound Vib. 131 67Google Scholar

    [13]

    Liu Qilin, Lai Huanxin 2022 Phys. Fluids 34 045125Google Scholar

    [14]

    刘琪麟, 赖焕新 2022 工程热物理学报 43 3266

    Liu Q, Lai H. 2022 J. Eng. Thermophys., 43 3266

    [15]

    Unnikrishnan S, Gaitonde D V 2016 J. Fluid Mech. 800 387Google Scholar

    [16]

    Myers M 1986 J. Sound Vib. 109 277Google Scholar

    [17]

    Myers M K 1991 J. Fluid Mech. 226 383Google Scholar

    [18]

    Han S, Li H, Luo Y, Wang Y, Ma R, Zhang S 2023 Phys. Fluids 35 076107Google Scholar

    [19]

    Towne A, Dawson S, Brès G A, Lozano-Duran A, Saxton-Fox T, Parthasarathy A, Jones A R, Biler H, Yeh C, Patel H D, Taira K 2023 AIAA J. 61 2867Google Scholar

    [20]

    Vreman A 2004 Phys. Fluids 16 3570.

    [21]

    Brès G A, Jordan P, Jaunet V, Rallic M L, Cavalieri A V G, Towne A, Lele S K, Colonius T, Schmidt O T 2018 J. Fluid Mech. 851 83

    [22]

    Brès G A, Jordan P, Colonius T, Rallic M L, Jaunet V, Lele S K 2014 Proceedings of the Summer Program. Stanford, CA: Center for Turbulence Research, Stanford University 2014 p221

    [23]

    Freund J B 1997 AIAA J. 35 740Google Scholar

    [24]

    Mani A 2012 J. Comput. Phys. 231 704Google Scholar

    [25]

    韩帅斌, 王益民, 武从海, 罗勇, 李虎 2024 力学学报 56 3142Google Scholar

    Han S, Wang Y, Wu C, Luo Y, Li H 2024 Chin. J. Theor. Appl. Mech. 56 3142Google Scholar

    [26]

    Mao F, Shi Y, Wu J 2010 Acta Mech. Sin. 26 355Google Scholar

    [27]

    Wu J, Ma H, Zhou M 2006 Vorticity and Vortex Dynamics (Berlin: Springer) p341

    [28]

    Sagaut P, Cambon C 2008 Homogeneous Turbulence Dynamics (Cambridge: Cambridge University Press) p80

    [29]

    Kovasznay L S G 1953 J. Aeronaut. Sci. 20 657Google Scholar

    [30]

    Chu B T, Kovásznay L S G 1958 J. Fluid Mech. 3 494Google Scholar

    [31]

    Campos L 2007 Appl. Mech. Rev. 60 149Google Scholar

    [32]

    Zaman K B M Q, Fagan A F, Upadhyay P 2022 J. Fluid Mech. 931 A30Google Scholar

    [33]

    Schmidt O T, Towne A, Colonius T, Cavalieri A V G, Jordan P, Bres G A 2017 J. Fluid Mech. 825 1153Google Scholar

    [34]

    Suzuki T, Colonius T 2006 J. Fluid Mech. 565 197Google Scholar

    [35]

    Towne A, Cavalieri A V, Jordan P, Colonius T, Schmidt O, Jaunet V, Bres G A 2017 J. Fluid Mech. 825 1113Google Scholar

    [36]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [37]

    赵鲲, 章荣平, 杨玫, 王勋年, 余荣科 2024 空气动力学学报 42 15Google Scholar

    Zhao K, Zhang P R, Yang M, Wang X N, Yu R K 2024 Acta Aerodyn. Sin. 42 15Google Scholar

    [38]

    王益民, 马瑞轩, 武从海, 罗勇, 张树海 2021 物理学报 70 194302Google Scholar

    Wang Y, Ma R, Wu C, Luo Y, Zhang S 2021 Acta Phys. Sin. 70 194302Google Scholar

    [39]

    马瑞轩, 王益民, 张树海, 武从海, 王勋年 2021 物理学报 70 104301Google Scholar

    Ma R, Wang Y, Zhang S, Wu C, Wang X 2021 Acta Phys. Sin. 70 104301Google Scholar

  • 图 1  数值模拟计算域及数据库区域示意图[21]

    Figure 1.  Schematic for the computational domain for the numerical simulation and the zone of dataset[21].

    图 6  密度脉动及各模态频率-波数谱 (a)原始密度脉动; (b)声模态; (c)涡模态; (d)熵模态

    Figure 6.  Frequency-wavenumber diagram for the density perturbation and the decomposed components: (a) Raw density perturbation; (b) acoustic component; (c) vortical component; (d) entropic component.

    图 2  三维流场$\theta = 0$位置处及轴对称模态压力脉动 (a)三维流场$\theta = 0$位置处压力脉动[19]; (b)轴对称模态压力脉动[19]

    Figure 2.  The distribution of pressure perturbation for 3D flow field at $\theta = 0$ and for asymmetric mode: (a) The distribution of pressure perturbation for 3D flow field at $\theta = 0$[19]; (b) the distribution of pressure perturbation for asymmetric mode[19].

    图 3  轴对称模态密度脉动及其声涡熵模态空间分布 (a)原始密度脉动; (b)声模态; (c)涡模态; (d)熵模态

    Figure 3.  The distribution of density perturbation and the acoustic, vortical and entropic mode: (a) Raw density perturbation; (b) acoustic component; (c) vortical component; (d) entropic component.

    图 4  x/D = 4.0位置处密度脉动及其流声模态的均方根随径向位置r的变化

    Figure 4.  The root mean square of density perturbation and the hydrodynamic and acoustic component along r at x/D = 4.0.

    图 5  总脉动能量以及各模态能量的瞬态和时间平均值的空间分布 (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$

    Figure 5.  Spacial distribution of instantaneous and time-averaged total energy perturbation and the decomposed components: (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$.

    图 7  各模态时均能流线(灰色背景为各模态时均能量) (a)涡模态; (b)熵模态; (c)非线性模态; (d)声模态

    Figure 7.  Streamline of time-averaged intensity for the decomposed components: (a) Vortical component; (b) entropic component; (c) nonlinear component; (d) acoustic component.

    图 8  时均声模态能流线脉动及对流部分 (a)脉动部分Iap; (b)对流部分Iac

    Figure 8.  Streamline of time-averaged acoustic intensity: (a) Perturbation component; (b) convective component.

    表 1  流声模态能量的空间积分及占比

    Table 1.  Spatial integral of total energy and the decomposed components.

    $E$ ${E_{\text{r}}}$ ${E_{\text{a}}}$ ${E_{\text{s}}}$ ${E_{\text{n}}}$
    总能量 $1.27 \times {10^{ - 3}}$ $1.12 \times {10^{ - 3}}$ $1.74 \times {10^{ - 6}}$ $5.28 \times {10^{ - 5}}$ $9.20 \times {10^{ - 5}}$
    百分比/% 88.4 0.14 4.16 7.26
    DownLoad: CSV
  • [1]

    Viswanathan K 2024 Int. J. Aeroacoust. 23 184Google Scholar

    [2]

    Jordan P, Gervais Y 2008 Exp. Fluids 44 1

    [3]

    李晓东, 徐希海, 高军辉, 何敬玉 2018 空气动力学学报 36 398

    Li X D, Xu X H, Gao J H, He J Y 2018 Acta Aerodyn. Sin. 36 398

    [4]

    Chu B T 1965 Acta Mech. 1 215Google Scholar

    [5]

    Tam C K W, Viswanathan K, Ahuja K K, Panda J 2008 J. Fluid Mech. 615 253Google Scholar

    [6]

    Tam C K W 2019 Philos. Trans. R. Soc. London, Ser. A 377 20190078

    [7]

    Obrist D 2011 Phys. Fluids 23 024901

    [8]

    Cavalieri A, Jordan P, Lesshafft L 2019 Appl. Mech. Rev. 71 020802Google Scholar

    [9]

    Cavalieri A, Rodriguez D, Jordan P, Colonius T, Gervais Y 2013 J. Fluid Mech. 730 559Google Scholar

    [10]

    Papamoschou D 2018 Int. J. Aeroacoust. 17 52Google Scholar

    [11]

    Jordan P, Daviller G, Comte P 2013 J. Sound Vib. 332 3924Google Scholar

    [12]

    Doak P 1989 J. Sound Vib. 131 67Google Scholar

    [13]

    Liu Qilin, Lai Huanxin 2022 Phys. Fluids 34 045125Google Scholar

    [14]

    刘琪麟, 赖焕新 2022 工程热物理学报 43 3266

    Liu Q, Lai H. 2022 J. Eng. Thermophys., 43 3266

    [15]

    Unnikrishnan S, Gaitonde D V 2016 J. Fluid Mech. 800 387Google Scholar

    [16]

    Myers M 1986 J. Sound Vib. 109 277Google Scholar

    [17]

    Myers M K 1991 J. Fluid Mech. 226 383Google Scholar

    [18]

    Han S, Li H, Luo Y, Wang Y, Ma R, Zhang S 2023 Phys. Fluids 35 076107Google Scholar

    [19]

    Towne A, Dawson S, Brès G A, Lozano-Duran A, Saxton-Fox T, Parthasarathy A, Jones A R, Biler H, Yeh C, Patel H D, Taira K 2023 AIAA J. 61 2867Google Scholar

    [20]

    Vreman A 2004 Phys. Fluids 16 3570.

    [21]

    Brès G A, Jordan P, Jaunet V, Rallic M L, Cavalieri A V G, Towne A, Lele S K, Colonius T, Schmidt O T 2018 J. Fluid Mech. 851 83

    [22]

    Brès G A, Jordan P, Colonius T, Rallic M L, Jaunet V, Lele S K 2014 Proceedings of the Summer Program. Stanford, CA: Center for Turbulence Research, Stanford University 2014 p221

    [23]

    Freund J B 1997 AIAA J. 35 740Google Scholar

    [24]

    Mani A 2012 J. Comput. Phys. 231 704Google Scholar

    [25]

    韩帅斌, 王益民, 武从海, 罗勇, 李虎 2024 力学学报 56 3142Google Scholar

    Han S, Wang Y, Wu C, Luo Y, Li H 2024 Chin. J. Theor. Appl. Mech. 56 3142Google Scholar

    [26]

    Mao F, Shi Y, Wu J 2010 Acta Mech. Sin. 26 355Google Scholar

    [27]

    Wu J, Ma H, Zhou M 2006 Vorticity and Vortex Dynamics (Berlin: Springer) p341

    [28]

    Sagaut P, Cambon C 2008 Homogeneous Turbulence Dynamics (Cambridge: Cambridge University Press) p80

    [29]

    Kovasznay L S G 1953 J. Aeronaut. Sci. 20 657Google Scholar

    [30]

    Chu B T, Kovásznay L S G 1958 J. Fluid Mech. 3 494Google Scholar

    [31]

    Campos L 2007 Appl. Mech. Rev. 60 149Google Scholar

    [32]

    Zaman K B M Q, Fagan A F, Upadhyay P 2022 J. Fluid Mech. 931 A30Google Scholar

    [33]

    Schmidt O T, Towne A, Colonius T, Cavalieri A V G, Jordan P, Bres G A 2017 J. Fluid Mech. 825 1153Google Scholar

    [34]

    Suzuki T, Colonius T 2006 J. Fluid Mech. 565 197Google Scholar

    [35]

    Towne A, Cavalieri A V, Jordan P, Colonius T, Schmidt O, Jaunet V, Bres G A 2017 J. Fluid Mech. 825 1113Google Scholar

    [36]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [37]

    赵鲲, 章荣平, 杨玫, 王勋年, 余荣科 2024 空气动力学学报 42 15Google Scholar

    Zhao K, Zhang P R, Yang M, Wang X N, Yu R K 2024 Acta Aerodyn. Sin. 42 15Google Scholar

    [38]

    王益民, 马瑞轩, 武从海, 罗勇, 张树海 2021 物理学报 70 194302Google Scholar

    Wang Y, Ma R, Wu C, Luo Y, Zhang S 2021 Acta Phys. Sin. 70 194302Google Scholar

    [39]

    马瑞轩, 王益民, 张树海, 武从海, 王勋年 2021 物理学报 70 104301Google Scholar

    Ma R, Wang Y, Zhang S, Wu C, Wang X 2021 Acta Phys. Sin. 70 104301Google Scholar

  • [1] Song Meng-Meng, Zhou Qian-Hong, Sun Qiang, Zhang Han-Tian, Yang Wei, Dong Ye. Influence of electron scattering and energy partition method on electron transport coefficient. Acta Physica Sinica, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [2] Cheng Wei, Teng Peng-Xiao, Lü Jun, Ji Pei-Feng, Dai Yi-Jing. Energy estimation of explosion sound source based on atmospheric sound propagation theory. Acta Physica Sinica, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [3] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [4] Xia Zhi, Li Xiu-Kun. Separation of elasto acoustic scattering of underwater target. Acta Physica Sinica, 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [5] Liu Jian-Ping, Hou Shun-Yong, Wei Bin, Yin Jian-Ping. Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams. Acta Physica Sinica, 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [6] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [7] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [8] Jin Wei, Hui Ning-Ju, Qu Shi-Xian. Phonon transport through helix nanobelts. Acta Physica Sinica, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [9] Zhang Liang, Fu Wei-Ji, Zhang Li-Feng, Wu Hai-Yan, Huang Hong. On the evolution of Couette flow energy. Acta Physica Sinica, 2010, 59(3): 1437-1448. doi: 10.7498/aps.59.1437
    [10] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Energy dissipation mechanism of phononic friction. Acta Physica Sinica, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [11] Zhang Yun-Jian, Meng Fan-Bao, Fan Zhi-Kai, Luo Xiong. A proposed high electrical efficiency and high current intensity radial split-cavity oscillator. Acta Physica Sinica, 2008, 57(2): 975-979. doi: 10.7498/aps.57.975
    [12] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [13] Yu Fei, Chen Jian, Li Wei-Bing, Chen Xin-Zhao. Sound field separation technique and its applications in near-field acoustic holography. Acta Physica Sinica, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
    [14] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [15] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [16] YU CHAO-FAN, ZHOU YI-CHANG. SUBSONIC AND SUPERSONIC SOLITONS IN AN ANHARMONIC LINEAR CHAINS WITH SECOND-NEIGHBOUR INTERACTION. Acta Physica Sinica, 1994, 43(10): 1677-1687. doi: 10.7498/aps.43.1677
    [17] ZHOU YI-CHANG, YU CHAO-FAN. SUBSONIC AND SUPERSONIC SOLITONS IN ONE DIMENSIONAL LINEAR CHAINS. Acta Physica Sinica, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [18] XIA MENG-FEN. LOWER-HYBRID-DRIVEN RADIAL ENERGY TRANSPORT OF RESONANT ELECTRONS. Acta Physica Sinica, 1988, 37(8): 1381-1385. doi: 10.7498/aps.37.1381
    [19] CHEN JIAN-WEN, FU SHU-FEN. ELECTRON ENERGY DISTRIBUTION AND TRANSPORT COEFFICIENTS IN ELECTRICALLY EXCITED KrF AND ArF. Acta Physica Sinica, 1981, 30(9): 1165-1173. doi: 10.7498/aps.30.1165
    [20] ZONG YOU-TAI, QIAN YOU-NENG, ZHOU HONG-LAI. MEASUREMENTS OF FIRST, SECOND AND FOURTH SOUND- VELOCITY IN SUPERFLUID Hell. Acta Physica Sinica, 1980, 29(11): 1513-1516. doi: 10.7498/aps.29.1513
Metrics
  • Abstract views:  404
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2025
  • Accepted Date:  18 April 2025
  • Available Online:  14 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回