Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of terahertz wave generation on lithium niobate chip by temporal dispersion of femtosecond laser

DUAN Haoyu XU Xitan ZHENG Ziyang HUANG Yibo LU Yao WU Qiang XU Jingjun

Citation:

Modulation of terahertz wave generation on lithium niobate chip by temporal dispersion of femtosecond laser

DUAN Haoyu, XU Xitan, ZHENG Ziyang, HUANG Yibo, LU Yao, WU Qiang, XU Jingjun
cstr: 32037.14.aps.74.20250573
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Femtosecond laser excitation of nonlinear materials is one of the key technologies for generating terahertz waves at present. Due to its advantages such as ultrashort time resolution and ultrabroad frequency spectrum, the technology has been widely used to characterize, measure, sense and image terahertz waves. However, the methods of controlling terahertz waves through microstructures can only regulate their transmission process, and they will face obstacles such as design difficulty and complex processes, making it hard to be widely used in industry. In this work, by introducing a pulse-shaping system to change the time dispersion of femtosecond laser pulses, the interaction process between femtosecond laser and lithium niobate crystals can be directly regulated, therefore the terahertz generation process can be directly controlled. Taking the second-order time dispersion for example, the terahertz signals generated by pump light with different second-order time dispersion in lithium niobate is detected by using the pump-probe phase-contrast imaging system. Meanwhile, the generation process of terahertz waves is simulated using the impact stimulated Raman scattering model and Huang-Kun equation, demonstrating the feasibility of using femtosecond laser pulses to adjust the time dispersion of terahertz waves. The experimental and simulation results show that when the time dispersion of femtosecond laser causes the pulse width to increase, the time in which the lithium niobate lattice is subjected to the impact stimulated Raman scattering force is prolonged, and the macroscopic polarization of the lithium niobate lattice is correspondingly extended. On the one hand, the longer duration of polarization results in a wider terahertz signal in the time domain and a narrower one in the frequency domain. On the other hand, since the impact stimulated Raman scattering force is proportional to the pump light intensity and is in the same direction during the interaction time, when the Raman scattering force ends, the lattice reaches a maximum displacement. The longer Raman scattering force causes the lattice to move to one side for a longer time, and correspondingly, the subsequent vibration of one period takes a longer time, ultimately resulting in a lower center frequency. In addition, this work also points out that the modulation of terahertz signals by pump light pulse width may be affected by the thickness of the wafer, and the modulation effect on thinner media may be more obvious. This result is of great reference significance for the active regulation of on-chip terahertz sources based on lithium niobate crystals in the future.
      Corresponding author: LU Yao, yaolu@nankai.edu.cn ; WU Qiang, wuqiang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205158, 12474344) and the Higher Education Discipline Innovation Program of China (the 111 Project) (Grant No. B23045).
    [1]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [2]

    Shahriar B Y, Elezzabi A Y 2024 ACS Photonics 11 4733Google Scholar

    [3]

    Suzuki D, Oda S, Kawano Y 2016 Nat. Photonics 10 809Google Scholar

    [4]

    Lee G, Lee J, Park Q H, Seo M 2022 ACS Photonics 9 1500Google Scholar

    [5]

    Zhang X Q, Zhang X, Zhang Z C, Zhang T Y, Xu X X, Tang F, Yang J, Wang J K, Jiang H, Duan Z Y, Wei Y Y, Gong Y B, Zhang H, Li P N, Hu M 2024 Nano Lett. 24 15008Google Scholar

    [6]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [7]

    Basini M, Pancaldi M, Wehinger B, Udina M, Unikandanunni V, Tadano T, Hoffmann M C, Balatsky A V, Bonetti S 2024 Nature 628 534Google Scholar

    [8]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [9]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [10]

    Zhou X, Lu Y, Liu H B, Wu Q, Xu X T, Chen L, Li Z X, Wang R, Guo J, Xu J J 2023 Mater. Today Phys. 35 101102Google Scholar

    [11]

    Xu X T, Lu Y, Huang Y B, Zhou X, Ma R B, Xiong H, Li M L, Wu Q, Xu J J 2023 Opt. Express 31 44375Google Scholar

    [12]

    Xu X T, Huang Y B, Lu Y, Ma R B, Wu Q, Xu J J 2023 Chin. J. Lasers 50 1714004Google Scholar

    [13]

    Huang L, Tian D, Liao L Y, Qiu H S, Bai H, Wang Q, Pan F, Zhang C H, Jin B B, Song C 2025 Adv. Mater. 37 2402063Google Scholar

    [14]

    Liao G Q, Sun F Z, Lei H Y, Wang T Z, Wang D, Wei Y Y, Liu F, Wang X, Li Y T, Zhang J 2024 Phys. Rev. Lett. 132 155001Google Scholar

    [15]

    Zhang S J, Zhou W M, Yin Y, Zou D B, Zhao N, Xie D, Zhuo H B 2023 Chin. Phys. B 32 035201Google Scholar

    [16]

    Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73 167801 [程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟 2024 物理学报 73 167801]Google Scholar

    Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73 167801Google Scholar

    [17]

    Xiong H, Lu Y, Wu Q, Li Z X, Qi J W, Xu X T, Ma R B, Xu J J 2021 ACS Photonics 8 2737Google Scholar

    [18]

    Huang Y B, Lu Y, Li W, Xu X T, Jiang X D, Ma R B, Chen L, Ruan N J, Wu Q, Xu J 2024 Light: Sci. Appl. 13 212Google Scholar

    [19]

    Lu Y, Huang Y B, Cheng J K, Ma R B, Xu X T, Zang Y J, Wu Q, Xu J J 2024 Nanophotonics 13 3279Google Scholar

    [20]

    Liu W C, Zhou X W, Zou S C, Hu Z G, Shen Y, Cai M Q, Lin D D, Zhou J, Deng X H, Guo T J, Lei J T 2023 Nanophotonics 12 1177Google Scholar

    [21]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [22]

    Liu B W, Peng Y, Jin Z M, Wu X, Gu H Y, Wei D S, Zhu Y M, Zhuang S L 2023 Chem. Eng. J. 462 142347Google Scholar

    [23]

    Huang L H, Cao H Y, Chen L, Ma Y, Yang Y H, Liu X Y, Wang W Q, Zhu Y M, Zhuang S L 2024 Talanta 269 125481Google Scholar

    [24]

    Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 69 2172Google Scholar

    [25]

    Chesnoy J, Mokhtari A 1988 Phys. Rev. A 38 3566Google Scholar

    [26]

    Huang K 1951 Nature 167 779Google Scholar

    [27]

    Huang K 1951 Proc. R. Soc. Lon. Ser. A 208 352Google Scholar

    [28]

    Wu Q, Lu Y, Ma R B, Xu X T, Huang Y B, Xu J J 2024 Laser Optoelectron. Prog. 61 0119001Google Scholar

    [29]

    Wu Q, Werley C A, Lin K H, Dorn A, Bawendi M G, Nelson K A 2009 Opt. Express 17 9219Google Scholar

    [30]

    Weiner A M 2000 Rev. Sci. Instrum. 71 1929Google Scholar

    [31]

    Parize G, Natile M, Guichard F, Comby A, Hanna M, Georges P 2025 Appl. Phys. Lett. 126 101105Google Scholar

  • 图 1  实验系统构成 (a)泵浦探测光路; (b)模拟中不同群时延色散的泵浦光的强度变化; (c)实验中不同群时延色散的泵浦光的强度变化

    Figure 1.  Composition of the experimental system: (a) Pump-probe optical path; (b) intensity variation of pump light with different group delay dispersion in the simulation; (c) intensity variation of pump light with different group delay dispersion in the experiment.

    图 2  泵浦光功率一致时的时域信号 (a)—(c)实验中不同色散泵浦光产生的THz信号及其相对峰值强度变化; (d)—(f)模拟中不同色散泵浦光产生的THz信号及其相对峰值强度变化

    Figure 2.  Time domain signal when the pump light power is consistent: (a)–(c) THz signals generated by different dispersion pump lights and their relative peak intensity changes in the experiment; (d)–(f) THz signals generated by pump lights with different dispersions and their relative peak intensity changes in the simulation.

    图 3  泵浦光功率一致时的频域信号 (a), (b)实验中不同色散泵浦光产生的THz信号; (c), (d)模拟中不同色散泵浦光产生的THz信号

    Figure 3.  Frequency domain signal when the pump light power is consistent: (a), (b) THz signals generated by pump lights with different dispersion in the experiment; (c), (d) THz signals generated by pump lights with different dispersion in the simulation.

    图 4  高斯脉冲模拟泵浦产生THz波 (a)—(c)脉宽相同、峰值强度不同的泵浦光及其产生的THz信号; (d)—(f)脉宽不同、峰值强度相同的泵浦光及其产生的THz信号

    Figure 4.  Gaussian pulse simulates pumping to generate THz waves: (a)–(c) THz signals generated by pump lights with the same pulse width but different intensities; (d)–(f) THz signals generated by pump lights with different pulse widths but the same intensity

  • [1]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [2]

    Shahriar B Y, Elezzabi A Y 2024 ACS Photonics 11 4733Google Scholar

    [3]

    Suzuki D, Oda S, Kawano Y 2016 Nat. Photonics 10 809Google Scholar

    [4]

    Lee G, Lee J, Park Q H, Seo M 2022 ACS Photonics 9 1500Google Scholar

    [5]

    Zhang X Q, Zhang X, Zhang Z C, Zhang T Y, Xu X X, Tang F, Yang J, Wang J K, Jiang H, Duan Z Y, Wei Y Y, Gong Y B, Zhang H, Li P N, Hu M 2024 Nano Lett. 24 15008Google Scholar

    [6]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [7]

    Basini M, Pancaldi M, Wehinger B, Udina M, Unikandanunni V, Tadano T, Hoffmann M C, Balatsky A V, Bonetti S 2024 Nature 628 534Google Scholar

    [8]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [9]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [10]

    Zhou X, Lu Y, Liu H B, Wu Q, Xu X T, Chen L, Li Z X, Wang R, Guo J, Xu J J 2023 Mater. Today Phys. 35 101102Google Scholar

    [11]

    Xu X T, Lu Y, Huang Y B, Zhou X, Ma R B, Xiong H, Li M L, Wu Q, Xu J J 2023 Opt. Express 31 44375Google Scholar

    [12]

    Xu X T, Huang Y B, Lu Y, Ma R B, Wu Q, Xu J J 2023 Chin. J. Lasers 50 1714004Google Scholar

    [13]

    Huang L, Tian D, Liao L Y, Qiu H S, Bai H, Wang Q, Pan F, Zhang C H, Jin B B, Song C 2025 Adv. Mater. 37 2402063Google Scholar

    [14]

    Liao G Q, Sun F Z, Lei H Y, Wang T Z, Wang D, Wei Y Y, Liu F, Wang X, Li Y T, Zhang J 2024 Phys. Rev. Lett. 132 155001Google Scholar

    [15]

    Zhang S J, Zhou W M, Yin Y, Zou D B, Zhao N, Xie D, Zhuo H B 2023 Chin. Phys. B 32 035201Google Scholar

    [16]

    Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73 167801 [程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟 2024 物理学报 73 167801]Google Scholar

    Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73 167801Google Scholar

    [17]

    Xiong H, Lu Y, Wu Q, Li Z X, Qi J W, Xu X T, Ma R B, Xu J J 2021 ACS Photonics 8 2737Google Scholar

    [18]

    Huang Y B, Lu Y, Li W, Xu X T, Jiang X D, Ma R B, Chen L, Ruan N J, Wu Q, Xu J 2024 Light: Sci. Appl. 13 212Google Scholar

    [19]

    Lu Y, Huang Y B, Cheng J K, Ma R B, Xu X T, Zang Y J, Wu Q, Xu J J 2024 Nanophotonics 13 3279Google Scholar

    [20]

    Liu W C, Zhou X W, Zou S C, Hu Z G, Shen Y, Cai M Q, Lin D D, Zhou J, Deng X H, Guo T J, Lei J T 2023 Nanophotonics 12 1177Google Scholar

    [21]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [22]

    Liu B W, Peng Y, Jin Z M, Wu X, Gu H Y, Wei D S, Zhu Y M, Zhuang S L 2023 Chem. Eng. J. 462 142347Google Scholar

    [23]

    Huang L H, Cao H Y, Chen L, Ma Y, Yang Y H, Liu X Y, Wang W Q, Zhu Y M, Zhuang S L 2024 Talanta 269 125481Google Scholar

    [24]

    Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 69 2172Google Scholar

    [25]

    Chesnoy J, Mokhtari A 1988 Phys. Rev. A 38 3566Google Scholar

    [26]

    Huang K 1951 Nature 167 779Google Scholar

    [27]

    Huang K 1951 Proc. R. Soc. Lon. Ser. A 208 352Google Scholar

    [28]

    Wu Q, Lu Y, Ma R B, Xu X T, Huang Y B, Xu J J 2024 Laser Optoelectron. Prog. 61 0119001Google Scholar

    [29]

    Wu Q, Werley C A, Lin K H, Dorn A, Bawendi M G, Nelson K A 2009 Opt. Express 17 9219Google Scholar

    [30]

    Weiner A M 2000 Rev. Sci. Instrum. 71 1929Google Scholar

    [31]

    Parize G, Natile M, Guichard F, Comby A, Hanna M, Georges P 2025 Appl. Phys. Lett. 126 101105Google Scholar

  • [1] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [2] Li Jia-Xiang, Wang Hui-Qin, Xu He-Qing, Zhang Hua, Feng Yan, Dong Mei-Tong. Reverse design of ultracompact micro-nano wavelength beam splitter based on quadratic programming algorithm. Acta Physica Sinica, 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [3] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] Teng Lu, Yu Zhong-Jun, Zhu Da-Li. Millimeter wave-terahertz substrate integrated waveguide transition structure based on low temperature co-fired ceramic. Acta Physica Sinica, 2022, 71(11): 118401. doi: 10.7498/aps.71.20220072
    [5] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] Huang Hui, Hu Chen-Yan, Tian Zi-Cong, Miu Qiu-Xia, Wang Hui-Qin. Intelligent design of large angle deflection beam splitter based on method of moving asymptotes. Acta Physica Sinica, 2021, 70(23): 234102. doi: 10.7498/aps.70.20210117
    [7] Ren Ze-Ping, Chen Zai-Gao, Chen Jian-Nan, Qiao Hai-Liang. Effects of frequency-dependent surface impedance on the vacuum electronic terahertz sources. Acta Physica Sinica, 2020, 69(4): 040701. doi: 10.7498/aps.69.20191488
    [8] Gao Yang, Chandan Pandey, Kong De-Yin, Wang Chun, Nie Tian-Xiao, Zhao Wei-Sheng, Miao Jun-Gang, Wang Li, Wu Xiao-Jun. Annealing effect on terahertz emission enhancement from ferromagnetic heterostructures. Acta Physica Sinica, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [9] Tian Zi-Cong, Guo Yi-Min, Hu Chen-Yan, Wang Hui-Qin, Lu Cui-Cui. Broadband efficient focusing on-chip integrated nano-lens. Acta Physica Sinica, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [10] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [12] Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang. Establishment of THz dispersion model of metals based on Kramers-Kronig relation. Acta Physica Sinica, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [13] Zuo Jian, Zhang Liang-Liang, Gong Chen, Zhang Cun-Lin. Research progress of super-continuum terahertz source based on nano-structures and terahertz lab on-chip system. Acta Physica Sinica, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [14] Li Zhong-Yang, Bing Pi-Bin, Xu De-Gang, Cao Xiao-Long, Yao Jian-Quan. Theoretical research on terahertz wave generation based on cascaded parametric oscillation. Acta Physica Sinica, 2013, 62(8): 084212. doi: 10.7498/aps.62.084212
    [15] Zhao Guo-Zhong, Wang Xin-Qiang, Wang Hai-Yan. Terahertz radiations from narrow band gap of semiconductor irradiated by femtosecond pulses with different pump intensities. Acta Physica Sinica, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [16] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [17] Huang Nan, Li Xue-Feng, Liu Hong-Jun, Xia Cai-Peng. Effects of gain saturation in terahertz radiation based on difference frequency generation. Acta Physica Sinica, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [18] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [19] Jia Wan-Li, Shi Wei, Ji Wei-Li, Ma De-Ming. Study of the dipole characteristic of terahertz wave emitted from photoconductor switches. Acta Physica Sinica, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [20] Li De-Rong, Lü Xiao-Hua, Wu Ping, Luo Qing-Ming, Chen R. Wei, Zeng Shao-Qun. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser. Acta Physica Sinica, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
Metrics
  • Abstract views:  541
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2025
  • Accepted Date:  28 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回