Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of crystal rotation on 6-inch SiC crystal growth by top-seeded solution growth method

YANG Yao LI Zaoyang GAO Junhao QI Chongchong LI Dengnian WU Guanghui LIU Lijun

Citation:

Effects of crystal rotation on 6-inch SiC crystal growth by top-seeded solution growth method

YANG Yao, LI Zaoyang, GAO Junhao, QI Chongchong, LI Dengnian, WU Guanghui, LIU Lijun
cstr: 32037.14.aps.74.20250595
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The top-seeded solution growth (TSSG) method is a critical technique for growing low-defect and high-quality silicon carbide (SiC) single crystals. A comprehensive numerical analysis model including induction heating, heat and mass transfer is developed for growing 6-inch SiC single crystals. The coupling effects of Lorentz force, centrifugal force, thermal buoyancy force and surface tension on the solution flow are considered, and the effects of crystal rotation speed on the velocity field, temperature field, carbon concentration field, crystal growth rate and carbon dissolution and precipitation on the crucible wall are systematically investigated. The results indicate that the Lorentz force in the solution results in a more complex flow field at low crystal rotation speeds. The crystal rotation speed should be controlled within the appropriate range to ensure that the carbon concentration distribution beneath the growth interface determined by the transport mode is coordinated with that at the growth interface determined by the temperature, which is beneficial for the uniform and high growth rate of SiC single crystals. Low rotation speeds reduce the growth rate of SiC single crystals, while high rotation speeds lead radial uniformity of growth rate to decrease. At a rotation speed of 25 r/min, the average growth rate of SiC single crystals is higher and the radial distribution uniformity is better. Further analysis is conducted on the dissolution and precipitation of carbon at the solution-crucible interface, and the regions, where the crucible wall dissolves quickly and SiC polycrystalline particles are generated, are located. The transport directions of polycrystalline particles are predicted based on the velocity field. The research results provide a scientific basis for growing 6-inch SiC single crystals by TSSG method.
      Corresponding author: LI Zaoyang, lizaoyang@mail.xjtu.edu.cn
    [1]

    Matsunami H, Kimoto T 1997 Mater. Sci. Eng. , R 20 125Google Scholar

    [2]

    Meyer C, Philip P 2005 Cryst. Growth Des. 5 1145Google Scholar

    [3]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 物理学报 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar

    [4]

    Yang N J, Song B, Wang W J, Li H 2022 Crystengcomm 24 3475Google Scholar

    [5]

    Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62 329Google Scholar

    [6]

    Xiao S Y, Harada S, Murayama K, Ujihara T 2016 Cryst. Growth Des. 16 5136Google Scholar

    [7]

    Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Takeda Y 2008 J. Cryst. Growth 310 1438Google Scholar

    [8]

    Wang G B, Sheng D, Li H, et al. 2023 Crystengcomm 25 560Google Scholar

    [9]

    Umezaki T, Koike D, Horio A, Harada S, Ujihara T 2014 15th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, Japan, September 29–October 4, 2014 p63

    [10]

    Dang Y F, Zhu C, Ikumi M, et al. 2021 Crystengcomm 23 1982Google Scholar

    [11]

    Yamamoto T, Okano Y, Ujihara T, Dost S 2017 J. Cryst. Growth 470 75Google Scholar

    [12]

    Umezaki T, Koike D, Harada S, Ujihara T 2016 Jpn. J. Appl. Phys. 55 125601Google Scholar

    [13]

    Mercier F, Dedulle J M, Chaussende D, Pons M 2010 J. Cryst. Growth 312 155Google Scholar

    [14]

    Ha M T, Shin Y J, Lee M H, Kim C J, Jeong S M 2018 Phys. Status Solidi A 215 1701017Google Scholar

    [15]

    Kusunoki K, Kishida Y, Seki K 2019 Mater. Sci. Forum (Switzerland) 963 85Google Scholar

    [16]

    Ha M T, Shin Y J, Bae S Y, Park S Y, Jeong S M 2019 J. Korean Ceram. Soc. 56 589Google Scholar

    [17]

    Su Hun C, Young Gon K, Yun Ji S, et al. 2018 Mater. Sci. Forum (Switzerland) 924 27Google Scholar

    [18]

    Liu B T, Yu Y, Tang X, Gao B 2020 J. Cryst. Growth 533 125406Google Scholar

    [19]

    Yoon J Y, Lee M H, Kim Y, Seo W S, Shul Y G, Lee W J, Jeong S M 2017 Jpn. J. Appl. Phys. 56 065501Google Scholar

    [20]

    Li F C, He L, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2023 J. Cryst. Growth 607 127112Google Scholar

    [21]

    Sui Z R, Xu L B, Cui C, Wang R, Pi X D, Yang D R, Han X F 2024 Crystengcomm 26 1022Google Scholar

    [22]

    Fujii K, Takei K, Aoshima M, et al. 2015 Mater. Sci. Forum (Switzerland) 821–823 35Google Scholar

    [23]

    Liu Y H, Li M Y, Yan Z Y, et al. 2024 J. Cryst. Growth 643 127801Google Scholar

    [24]

    Mercier F, Nishizawa S 2011 8th European Conference on Silicon Carbide and Related Materials Oslo, Norway, August 29–September 2, 2011 p32

    [25]

    Ariyawong K, Dedulle J M, Chaussende D 2014 15th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, Japan, September 29–October 04, 2014 p71

    [26]

    Mercier F, Nishizawa S 2013 J. Cryst. Growth 362 99Google Scholar

    [27]

    Wang L, Horiuchi T, Sekimoto A, Okano Y, Ujihara T, Dost S 2018 J. Cryst. Growth 498 140Google Scholar

    [28]

    Ha M T, Lich L V, Shin Y J, Bae S Y, Lee M H, Jeong S M 2020 Materials 13 651Google Scholar

    [29]

    Wang L, Takehara Y, Sekimoto A, Okano Y, Ujihara T, Dost S 2020 Crystals 10 111Google Scholar

    [30]

    Li Z Y, Yang Y, Wang J L, Luo J P, Liu L J 2024 Proceedings of the 11th International Workshop on Modeling in Crystal Growth, ROMANIA, September 22–25, 2024 p573198

    [31]

    Weiss J, Csendes Z J 1982 IEEE Transactions on Power Apparatus and Systems 101 3796Google Scholar

    [32]

    Tavakoli M H 2008 Cryst. Growth Des. 8 483Google Scholar

    [33]

    Lefebure J, Dedulle J M, Ouisse T, Chaussende D 2012 Cryst. Growth Des. 12 909Google Scholar

    [34]

    Liu B T, Yu Y, Tang X, Gao B 2019 J. Cryst. Growth 527 125248Google Scholar

    [35]

    Hayashi Y, Mitani T, Komatsu N, Kato T, Okumura H 2019 J. Cryst. Growth 523 125151Google Scholar

  • 图 1  溶液法SiC单晶生长炉结构示意图

    Figure 1.  Structural configuration of the TSSG furnace.

    图 2  SiC单晶炉的功率和温度分布 (a)功率密度和温度分布; (b)功率分配

    Figure 2.  Power and temperature distribution in the TSSG furnace (4 kHz, 700 A): (a) Power density and temperature distribution; (b) power distribution.

    图 3  溶液中洛伦兹力的大小与方向分布(4 kHz, 700 A). 图中左侧云图表示力的大小; 右侧箭头仅表示力的方向, 与大小无关

    Figure 3.  Lorentz force distribution in the solution (4 kHz, 700 A). The left side indicates the magnitude of the force. The right arrow indicates only the direction of the force, independent of the magnitude.

    图 4  不考虑洛伦兹力时不同晶体转速下溶液中的温度场(左侧)和速度场(右侧) (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min

    Figure 4.  Temperature (left: ∆T = 1 K) and velocity fields (right: ∆u = 0.01 m/s) in the solution at different crystal rotation rates without considering Lorentz force: (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min.

    图 5  考虑洛伦兹力时不同晶体转速下溶液中的温度场(左侧)和速度场(右侧) (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min

    Figure 5.  Temperature (left: ∆T = 1 K) and velocity fields (right: ∆u = 0.01 m/s) in the solution at different crystal rotation rates considering Lorentz force: (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min.

    图 6  不同晶体转速下溶液中的碳浓度(左侧)与过饱和度(右侧)分布 (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min

    Figure 6.  Distribution of carbon concentration (left: $\Delta C$= 5 mol/m3) and supersaturation (right: $\Delta S$= 0.001) in the solution at different crystal rotation rates: (a) 0 r/min; (b) 10 r/min; (c) 25 r/min; (d) 55 r/min; (e) 100 r/min; (f) 150 r/min.

    图 7  生长界面附近碳浓度局部分布 (a) 10 r/min; (b) 25 r/min; (c) 100 r/min

    Figure 7.  Local distribution of carbon concentration at the growth interface (∆C = 1 mol/m3): (a) 10 r/min; (b) 25 r/min; (c) 100 r/min.

    图 8  生长界面SiC单晶生长速率 (a)径向生长速率分布; (b)平均生长速率和生长速率标准差

    Figure 8.  SiC single-crystal growth rates at the growth interface: (a) Radial growth rate distribution; (b) average growth rate and standard deviation of growth rate.

    图 9  径向温度和碳浓度分布 (a)生长界面径向温度分布; (b)生长界面与相邻第一层网格处的径向碳浓度分布

    Figure 9.  Radial temperature and carbon concentration distribution: (a) Radial temperature distribution along the growth interface; (b) radial carbon concentration distribution at the growth interface and the neighboring mesh.

    图 10  溶液-坩埚交界面的碳浓度梯度

    Figure 10.  Carbon concentration gradient distribution at the solution-crucible interface.

    表 1  主要材料的物理特性[13,16,18]

    Table 1.  Physical properties of the main materials[13,16,18].

    Materials Parameters Value Units
    Si Density 2550 kg/m3
    Viscosity 8×10–4 Pa·s
    Electrical conductivity 1.2×106 S/m
    Thermal conductivity 65 W/(m·K)
    Specific heat 1000 J/(kg·K)
    Thermal expansion coefficient 0.00014 1/K
    Surface tension –2.5×10–4 N/m·K
    Surface emissivity 0.3
    SiC Density 3216 kg/m3
    Electrical conductivity 1000 S/m
    Thermal conductivity 30 W/(m·K)
    Specific heat 1290 J/(kg·K)
    Surface emissivity 0.5
    Graphite Electrical conductivity 75400 S/m
    Thermal conductivity 150×300/T W/(m·K)
    Surface emissivity 0.9
    Carbon felt Electrical conductivity 430 S/m
    Thermal conductivity 0.336 W/(m·K)
    Surface emissivity 0.8
    Copper Electrical conductivity 5.99×107 S/m
    Thermal conductivity 400 W/(m·K)
    Surface emissivity 0.5
    DownLoad: CSV
  • [1]

    Matsunami H, Kimoto T 1997 Mater. Sci. Eng. , R 20 125Google Scholar

    [2]

    Meyer C, Philip P 2005 Cryst. Growth Des. 5 1145Google Scholar

    [3]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 物理学报 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar

    [4]

    Yang N J, Song B, Wang W J, Li H 2022 Crystengcomm 24 3475Google Scholar

    [5]

    Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62 329Google Scholar

    [6]

    Xiao S Y, Harada S, Murayama K, Ujihara T 2016 Cryst. Growth Des. 16 5136Google Scholar

    [7]

    Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Takeda Y 2008 J. Cryst. Growth 310 1438Google Scholar

    [8]

    Wang G B, Sheng D, Li H, et al. 2023 Crystengcomm 25 560Google Scholar

    [9]

    Umezaki T, Koike D, Horio A, Harada S, Ujihara T 2014 15th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, Japan, September 29–October 4, 2014 p63

    [10]

    Dang Y F, Zhu C, Ikumi M, et al. 2021 Crystengcomm 23 1982Google Scholar

    [11]

    Yamamoto T, Okano Y, Ujihara T, Dost S 2017 J. Cryst. Growth 470 75Google Scholar

    [12]

    Umezaki T, Koike D, Harada S, Ujihara T 2016 Jpn. J. Appl. Phys. 55 125601Google Scholar

    [13]

    Mercier F, Dedulle J M, Chaussende D, Pons M 2010 J. Cryst. Growth 312 155Google Scholar

    [14]

    Ha M T, Shin Y J, Lee M H, Kim C J, Jeong S M 2018 Phys. Status Solidi A 215 1701017Google Scholar

    [15]

    Kusunoki K, Kishida Y, Seki K 2019 Mater. Sci. Forum (Switzerland) 963 85Google Scholar

    [16]

    Ha M T, Shin Y J, Bae S Y, Park S Y, Jeong S M 2019 J. Korean Ceram. Soc. 56 589Google Scholar

    [17]

    Su Hun C, Young Gon K, Yun Ji S, et al. 2018 Mater. Sci. Forum (Switzerland) 924 27Google Scholar

    [18]

    Liu B T, Yu Y, Tang X, Gao B 2020 J. Cryst. Growth 533 125406Google Scholar

    [19]

    Yoon J Y, Lee M H, Kim Y, Seo W S, Shul Y G, Lee W J, Jeong S M 2017 Jpn. J. Appl. Phys. 56 065501Google Scholar

    [20]

    Li F C, He L, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2023 J. Cryst. Growth 607 127112Google Scholar

    [21]

    Sui Z R, Xu L B, Cui C, Wang R, Pi X D, Yang D R, Han X F 2024 Crystengcomm 26 1022Google Scholar

    [22]

    Fujii K, Takei K, Aoshima M, et al. 2015 Mater. Sci. Forum (Switzerland) 821–823 35Google Scholar

    [23]

    Liu Y H, Li M Y, Yan Z Y, et al. 2024 J. Cryst. Growth 643 127801Google Scholar

    [24]

    Mercier F, Nishizawa S 2011 8th European Conference on Silicon Carbide and Related Materials Oslo, Norway, August 29–September 2, 2011 p32

    [25]

    Ariyawong K, Dedulle J M, Chaussende D 2014 15th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, Japan, September 29–October 04, 2014 p71

    [26]

    Mercier F, Nishizawa S 2013 J. Cryst. Growth 362 99Google Scholar

    [27]

    Wang L, Horiuchi T, Sekimoto A, Okano Y, Ujihara T, Dost S 2018 J. Cryst. Growth 498 140Google Scholar

    [28]

    Ha M T, Lich L V, Shin Y J, Bae S Y, Lee M H, Jeong S M 2020 Materials 13 651Google Scholar

    [29]

    Wang L, Takehara Y, Sekimoto A, Okano Y, Ujihara T, Dost S 2020 Crystals 10 111Google Scholar

    [30]

    Li Z Y, Yang Y, Wang J L, Luo J P, Liu L J 2024 Proceedings of the 11th International Workshop on Modeling in Crystal Growth, ROMANIA, September 22–25, 2024 p573198

    [31]

    Weiss J, Csendes Z J 1982 IEEE Transactions on Power Apparatus and Systems 101 3796Google Scholar

    [32]

    Tavakoli M H 2008 Cryst. Growth Des. 8 483Google Scholar

    [33]

    Lefebure J, Dedulle J M, Ouisse T, Chaussende D 2012 Cryst. Growth Des. 12 909Google Scholar

    [34]

    Liu B T, Yu Y, Tang X, Gao B 2019 J. Cryst. Growth 527 125248Google Scholar

    [35]

    Hayashi Y, Mitani T, Komatsu N, Kato T, Okumura H 2019 J. Cryst. Growth 523 125151Google Scholar

  • [1] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [3] Jing Bin, Xu Meng, Peng Cong, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng. Sol-gel indium-zinc-tin-oxide thin film transistor pixel array with superior stabilityunder negative bias illumination stress. Acta Physica Sinica, 2022, 71(13): 138502. doi: 10.7498/aps.71.20220154
    [4] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [5] Chai Zhen-Xia, Liu Wei, Yang Xiao-Liang, Zhou Yun-Long. Application of variable-time-period harmonic balance method to periodic unsteady vortex shedding. Acta Physica Sinica, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [6] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [7] Zhang Shi-Yu, Yu Zhi-Nong, Cheng Jin, Wu De-Long, Li Xu-Yang, Xue Wei. Effects of annealing temperature and Ga content on properties of solution-processed InGaZnO thin film. Acta Physica Sinica, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [8] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [9] Wang Lu, Xu Jiang-Rong. A two-phase turbulence probability density function model in unified colored-noise approximation. Acta Physica Sinica, 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [10] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [11] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [12] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [13] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [14] Zhu Chang-Sheng, Wang Jun-Wei, Wang Zhi-Ping, Feng Li. Denedritic growth in forced flow using the phase-field simulation. Acta Physica Sinica, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [15] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] Deng Yi-Xin, Tu Cheng-Hou, Lü Fu-Yun. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [17] Luo Chong, Meng Zhi-Guo, Wang Shuo, Xiong Shao-Zhen. Preparation of poly-slicon thin film by aluminum induced crystallization based on Al-salt solution. Acta Physica Sinica, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [18] Yang Yu-Juan, Wang Jin-Cheng, Zhang Yu-Xiang, Zhu Yao-Chan, Yang Gen-Cang. Investigation on the effect of lamellar thickness on three-dimensional lamellar eutectic growth by multi-phase field model. Acta Physica Sinica, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [19] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
Metrics
  • Abstract views:  872
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2025
  • Accepted Date:  27 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回