Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on metal contamination in process lines of superconducting quantum processor chips

XU Xiao ZHANG Haibin SU Feifan YAN Kai RONG Hao DENG Hui YANG Xinying MA Xiaoteng DONG Xue WANG Qiming LIU Jialin LI Manman

Citation:

Research on metal contamination in process lines of superconducting quantum processor chips

XU Xiao, ZHANG Haibin, SU Feifan, YAN Kai, RONG Hao, DENG Hui, YANG Xinying, MA Xiaoteng, DONG Xue, WANG Qiming, LIU Jialin, LI Manman
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The manufacturing process of superconducting quantum processor chips faces unique metal contamination challenges, with significant differences in material systems and process characteristics compared to traditional semiconductor chips. This study focuses on the issue of metal contamination in the fabrication process of quantum chips, systematically analyzing the sources, diffusion mechanisms, and prevention strategies of metal contamination in quantum chips. It particularly emphasizes the bulk diffusion and surface migration behaviors of superconducting materials (such as Ta, Nb, Al, TiN) on sapphire and silicon substrates. The aim is to provide theoretical basis and technical references for process optimization, and to promote the industrialization process of quantum computing technology in our country.
    The metal contamination in the fabrication of quantum chips is mainly caused by the metal film materials used in the process, the external environment, or the unintended metal impurity atoms introduced during the manufacturing process. Among them, some quantum chip components directly use superconducting metal materials. Unlike semiconductor chips, they cannot achieve front and back stage isolation, resulting in the continuous presence of metal surface migration channels, and there are exposed metal structures on the chip surface. Metal contamination often leads to two fundamental failure problems: circuit short circuits and leakage currents. These problems mainly result from the bulk diffusion of metal impurities in the dielectric layer and the migration behavior on the sample surface. The diffusion and migration rates of metals are affected by temperature, interface reactions, defects, and grain boundaries. The results show that the sapphire substrate, due to its dense lattice structure, exhibits excellent anti-diffusion performance, reducing the risk of contamination and providing a stable interface environment for superconducting quantum chips. For silicon substrates, special attention needs to be paid to the contamination risks posed by high-mobility metals such as Au, In, and Sn. Experimental verification shows that Ti/Au under bump metallization structures on silicon substrates are prone to Au penetration diffusion, and increasing Ti thickness does not significantly improve the blocking effect. The low-temperature process (<250 °C) and ultra-low-temperature operating environment (mK level) of quantum chips effectively suppress metal diffusion, but exposed metal surfaces and material diversity still pose unique challenges.
    The study recommends establishing a dedicated metal contamination prevention system for quantum chips and proposes future research directions, including evaluation of novel materials, surface state regulation, and long-term reliability studies. This work provides important theoretical support and technical guidance for process optimization and performance enhancement of superconducting quantum chips.
  • [1]

    Acharya R, Abanin D A, Aghababaie-Beni L, Aleiner I, Andersen T I, Ansmann M, Arute F, Arya K, Asfaw A, Astrakhantsev N, Atalaya J, Babbush R, Bacon D, Ballard B, Bardin J C, Bausch J, Bengtsson A, Bilmes A, Blackwell S, Boixo S, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Browne D A, Buchea B, Buckley B B, Buell D A, Burger T, Burkett B, Bushnell N, Cabrera A, Campero J, Chang H-S, Chen Y, Chen Z, Chiaro B, Chik D, Chou C, Claes J, Cleland A Y, Cogan J, Collins R, Conner P, Courtney W, Crook A L, Curtin B, Das S, Davies A, De Lorenzo L, Debroy D M, Demura S, Devoret M, Di Paolo A, Donohoe P, Drozdov I, Dunsworth A, Earle C, Edlich T, Eickbusch A, Elbag A M, Elzouka M, Erickson C, Faoro L, Farhi E, Ferreira V S, Burgos L F, Forati E, Fowler A G, Foxen B, Ganjam S, Garcia G, Gasca R, Genois É, Giang W, Gidney C, Gilboa D, Gosula R, Dau A G, Graumann D, Greene A, Gross J A, Habegger S, Hall J, Hamilton M C, Hansen M, Harrigan M P, Harrington S D, Heras F J H, Heslin S, Heu P, Higgott O, Hill G, Hilton J, Holland G, Hong S, Huang H-Y, Huff A, Huggins W J, Ioffe L B, Isakov S V, Iveland J, Jeffrey E, Jiang Z, Jones C, Jordan S, Joshi C, Juhas P, Kafri D, Kang H, Karamlou A H, Kechedzhi K, Kelly J, Khaire T, Khattar T, Khezri M, Kim S, Klimov P V, Klots A R, Kobrin B, Kohli P, Korotkov A N, Kostritsa F, Kothari R, Kozlovskii B, Kreikebaum J M, Kurilovich V D, Lacroix N, Landhuis D, Lange-Dei T, Langley B W, Laptev P, Lau K-M, Le Guevel L, Ledford J, Lee J, Lee K, Lensky Y D, Leon S, Lester B J, Li W Y, Li Y, Lill A T, Liu W, Livingston W P, Locharla A, Lucero E, Lundahl D, Lunt A, Madhuk S, Malone F D, Maloney A, Mandrà S, Manyika J, Martin L S, Martin O, Martin S, Maxfield C, McClean J R, McEwen M, Meeks S, Megrant A, Mi X, Miao K C, Mieszala A, Molavi R, Molina S, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Neven H, Newman M, Ng J H, Nguyen A, Nguyen M, Ni C-H, Niu M Y, O’Brien T E, Oliver W D, Opremcak A, Ottosson K, Petukhov A, Pizzuto A, Platt J, Potter R, Pritchard O, Pryadko L P, Quintana C, Ramachandran G, Reagor M J, Redding J, Rhodes D M, Roberts G, Rosenberg E, Rosenfeld E, Roushan P, Rubin N C, Saei N, Sank D, Sankaragomathi K, Satzinger K J, Schurkus H F, Schuster C, Senior A W, Shearn M J, Shorter A, Shutty N, Shvarts V, Singh S, Sivak V, Skruzny J, Small S, Smelyanskiy V, Smith W C, Somma R D, Springer S, Sterling G, Strain D, Suchard J, Szasz A, Sztein A, Thor D, Torres A, Torunbalci M M, Vaishnav A, Vargas J, Vdovichev S, Vidal G, Villalonga B, Heidweiller C V, Waltman S, Wang S X, Ware B, Weber K, Weidel T, White T, Wong K, Woo B W K, Xing C, Yao Z J, Yeh P, Ying B, Yoo J, Yosri N, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N 2024 Nature 638 920

    [2]

    Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, Chen K, Chen X, Chen X, Chen Z, Chen Z, Chen Z, Chu W, Deng H, Deng Z, Ding P, Ding X, Ding Z, Dong S, Dong Y, Fan B, Fu Y, Gao S, Ge L, Gong M, Gui J, Guo C, Guo S, Guo X, Han L, He T, Hong L, Hu Y, Huang H-L, Huo Y-H, Jiang T, Jiang Z, Jin H, Leng Y, Li D, Li D, Li F, Li J, Li J, Li J, Li J, Li N, Li S, Li W, Li Y, Li Y, Liang F, Liang X, Liao N, Lin J, Lin W, Liu D, Liu H, Liu M, Liu X, Liu X, Liu Y, Lou H, Ma Y, Meng L, Mou H, Nan K, Nie B, Nie M, Ning J, Niu L, Peng W, Qian H, Rong H, Rong T, Shen H, Shen Q, Su H, Su F, Sun C, Sun L, Sun T, Sun Y, Tan Y, Tan J, Tang L, Tu W, Wan C, Wang J, Wang B, Wang C, Wang C, Wang C, Wang J, Wang L, Wang R, Wang S, Wang X, Wang X, Wang X, Wang Y, Wei Z, Wei J, Wu D, Wu G, Wu J, Wu S, Wu Y, Xie S, Xin L, Xu Y, Xue C, Yan K, Yang W, Yang X, Yang Y, Ye Y, Ye Z, Ying C, Yu J, Yu Q, Yu W, Zeng X, Zhan S, Zhang F, Zhang H, Zhang K, Zhang P, Zhang W, Zhang Y, Zhang Y, Zhang L, Zhao G, Zhao P, Zhao X, Zhao X, Zhao Y, Zhao Z, Zheng L, Zhou F, Zhou L, Zhou N, Zhou N, Zhou S, Zhou S, Zhou Z, Zhu C, Zhu Q, Zou G, Zou H, Zhang Q, Lu C-Y, Peng C-Z, Zhu X, Pan J-W 2025 Phys. Rev. Lett. 134 090601

    [3]

    Van Damme J, Massar S, Acharya R, Ivanov T, Perez Lozano D, Canvel Y, Demarets M, Vangoidsenhoven D, Hermans Y, Lai J G, Vadiraj A M, Mongillo M, Wan D, De Boeck J, Potočnik A, De Greve K 2024 Nature 634 74

    [4]

    Dieter K S 2005 Semiconductor Material and Device Characterization (Hoboken: Wiley IEEE Press) p127

    [5]

    Weber E R 1983 Appl. Phys. A 30 1

    [6]

    Quirk M, Serda J (translated by Han Z S) 2015 Semiconductor Manufacturing Technology (Beijing: Publishing House of Electronics Industry) (in Chinese)[夸克M. 瑟达 J著(韩郑生译)2015 半导体制造技术(北京:电子工业出版社)]

    [7]

    Xiao H 2012 Introduction to Semiconductor Manufacturing Technology (Bellingham: SPIE Press)

    [8]

    Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Heidelberg: Springer Verlag)

    [9]

    Seshan K 2012 Handbook of Thin Film Deposition : Techniques, Processes, and Technologies (Amsterdam: Elsevier)

    [10]

    Gas P, d'Heurle F M 1993 Appl. Surf. Sci. 73 153

    [11]

    Nicolet M A 1978 Thin Solid Films 52 415

    [12]

    Gösele U, Frank W, Seeger A 1980 Appl. Phys 23 361

    [13]

    Nakashima K, Iwami M, Hiraki A 1975 Thin Solid Films 25 423

    [14]

    Murarka S P 2005 Diffusion Processes in Advanced Technological Materials (Amsterdam: Elsevier) pp239-281

    [15]

    Saiz E, Cannon R M, Tomsia A P 1999 Acta Mater. 47 4209

    [16]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J 2012 Phys. Rev. Lett. 108 096102

    [17]

    Prabriputaloong K, Piggott M R 1973 J. Am. Ceram. Soc. 56 177

    [18]

    Seebauer E G, Allen C E 1995 Prog. Surf. Sci. 49 265

    [19]

    Kirby K W 2008 M.S. Dissertation(State College: The Pennsylvania State University)

    [20]

    Wu N J, Yasunaga H, Natori A 1992 Appl. Surf. Sci. 260 75

    [21]

    Li Z R 2012 M.S. Dissertation(Beijing: Beijing University of Chemical Technology)(in Chinese) [李智瑞 2012 硕士学位论文 (北京:北京化工大学)]

    [22]

    Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q 2010 Acta Phys. Sin. 59 3438(in Chinese) [陆裕东,何小琦,恩云飞,王歆,庄志强 2010 物理学报59 3438]

  • [1] Cheng Xiao-Xiao, Liu Jian-Guo, Xu Liang, Xu Han-Yang, Jin Ling, Shu Sheng-Quan, Xue Ming. Pollution gas concentration and diffusion model in shale gas flowback fluid. Acta Physica Sinica, doi: 10.7498/aps.70.20210017
    [2] Zhang Hai-Bao, Chen Qiang. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Physica Sinica, doi: 10.7498/aps.70.20202233
    [3] Deng Yong-He, Zhang Yu-Wen, Tan Heng-Bo, Wen Da-Dong, Gao Ming, Wu An-Ru. Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.70.20210336
    [4] Tang Fu-Ming, Liu Kai, Yang Yi, Tu Qian, Wang Feng, Wang Zhe, Liao Qing. Numerical solution of three-dimensional time-dependent Schrödinger equation based on graphic processing unit acceleration. Acta Physica Sinica, doi: 10.7498/aps.69.20200700
    [5] Bai Qing-Shun,  Zhang Kai,  Shen Rong-Qi,  Zhang Fei-Hu,  Miao Xin-Xiang,  Yuan Xiao-Dong. Laser ablation mechanism of contamination on surface of single crystal iron. Acta Physica Sinica, doi: 10.7498/aps.67.20180999
    [6] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, doi: 10.7498/aps.63.107302
    [7] Xu Yang-Qiu, Zhang Hui-Bin, Zhou Pei-Heng, Lu Hai-Peng, Liang Di-Fei, Xie Jian-Liang. Design of a low-frequency broadband circuit analog absorbers based on wire media. Acta Physica Sinica, doi: 10.7498/aps.62.058103
    [8] Hong Xia, Guo Xiong-Bin, Fang Xu, Li Kan, Ye Hui. Design of silicon based germanium metal-semiconductor-metal photodetector enhanced by surface plasmon resonance. Acta Physica Sinica, doi: 10.7498/aps.62.178502
    [9] Zhang Chao-Xia, Yu Si-Min. Wireless chaotic speech communication via digital signal processor ——system design and hardware implementation. Acta Physica Sinica, doi: 10.7498/aps.59.3017
    [10] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, doi: 10.7498/aps.59.2169
    [11] Lu Yu-Dong, He Xiao-Qi, En Yun-Fei, Wang Xin, Zhuang Zhi-Qiang. Directional diffusion of atoms in metal strips/bump interconnects of flip chip. Acta Physica Sinica, doi: 10.7498/aps.59.3438
    [12] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, doi: 10.7498/aps.58.4605
    [13] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, doi: 10.7498/aps.57.3506
    [14] The surface mapping and crystal orientation of body-centered cubic thin metal tungsten films of different thickness. Acta Physica Sinica, doi: 10.7498/aps.56.7248
    [15] Jin Fang-Wei, Ren Zhong-Ming, Ren Wei-Li, Deng Kang, Zhong Yun-Bo. On dynamics of precipitated grains migrating in molten metal under high gradient magnetic field. Acta Physica Sinica, doi: 10.7498/aps.56.3851
    [16] DONG ZHENG-CHAO. SURFACE AND INTERFACES SCATTERING EFFECT ON QUANTUM TRANSPORT IN MULTILAYERED CYLINDRICAL WIRE. Acta Physica Sinica, doi: 10.7498/aps.48.127
    [17] LONG DE-SHUN, WANG YAN-SEN, FANG DU-FEI, TANG JIA-YONG. CALCULATIONS OF THE SURFACE AND DIFFUSION BARRIERS FOR OXYGEN PENETRATION ON METALS AND THEIR OXIDES. Acta Physica Sinica, doi: 10.7498/aps.46.1894
    [18] KANG JIN-FENG, CHEN XIN, WANG YOU-XIANG, HAN RU-QI, XIONG GUANG-CHENG, LIAN GUI-JUN, LI JIE, WU SI-CHENG. DIFFERENT INTERDIFFUSION CHARACTERISTICS BETWEEN Ag AND Al/YBa_2Cu_3O_(7-x) CONTACT INTERFACE. Acta Physica Sinica, doi: 10.7498/aps.44.1831
    [19] ZHU HUI-LONG, HUANG ZU-QIA. MIGRATION OF VACANCIES IN BCC METALS. Acta Physica Sinica, doi: 10.7498/aps.36.1122
    [20] C. C. YANG. AN INVESTIGATION OF THE CONFIGURATIONS OF INTERSTIALS IN B.C.C. METALS BY ELASTIC METHOD——I. THE POSITION ENERGY AND ACTIVATION ENERGY OF DIFFUSION OF INTERSTIAL IMPURITIES. Acta Physica Sinica, doi: 10.7498/aps.22.281
Metrics
  • Abstract views:  313
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  29 October 2025
  • /

    返回文章
    返回