Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple diagnostic techniques measured neutral gas temperatures in N2 plasma and Ar-N2 mixed plasma

AN Yanlin ZHAO Mingliang LUO Qian GAO Fei WANG Younian

Citation:

Multiple diagnostic techniques measured neutral gas temperatures in N2 plasma and Ar-N2 mixed plasma

AN Yanlin, ZHAO Mingliang, LUO Qian, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low-temperature inductively coupled radio-frequency plasma is a key plasma source in semiconductor fabrication, where the neutral gas temperature (Tg) is one of the critical parameters influencing chemical reactions and plasma characteristics. Precise control of Tg significantly influences processes such as thin-film deposition and reactive ion etching, with its synergistic interaction with plasma parameters (ne, Te) often determining process outcomes. Consequently, a thorough understanding of the evolution of Tg and its correlation with discharge parameters has become a critical issue for optimizing semiconductor manufacturing processes. To achieve more accurate measurements of neutral gas temperature, this work employs three temperature measurement techniques: spectroscopy, Bragg grating, and fiber optic sensing. These methods are used to systematically investigate the variation patterns of neutral gas temperature (Tg) in nitrogen plasma and nitrogen-argon mixed plasma under different radio-frequency power, gas pressure, and gas composition conditions. To elucidate the gas heating mechanism, this work combines Langmuir probe measurements of electron density, electron temperature, electron energy probability distribution with a global model simulation. The results show that as the RF power increases, the energy coupled to the plasma increases, the ionization reaction is enhanced, and the collision process and energy transfer between electrons and neutral particles increase, resulting in a monotonically increasing trend of Tg. When gas pressure initially increases, both electron density and background gas density rise together, enhancing heating efficiency and driving rapid Tg growth. However, beyond 3 Pa, electron mean free path shortens and electron density declines. In contrast, background gas density continues to increase, leading to slower Tg growth. In nitrogen/argon mixed system discharges, increasing the argon proportion significantly enhances the rate of Tg increase. This occurs because a higher argon ratio elevates the proportion of high-energy electrons and electron density, thereby strengthening ionization and neutral gas heating. At the same time, argon metastable atoms enhance the density of excited nitrogen particles through the Penning process, which promotes nitrogen molecular excitation to higher energy levels and further heats the gas. Additionally, we observe that the radial temperature distribution in pure nitrogen plasma shifts from parabolic to saddle-type with axial height increasing, due to intensified electron collision excitation near the coil under electromagnetic field effects. In this study, it is also found that the glass transition temperature at the radial edge remains virtually unchanged as atmospheric pressure increases. This is because, as pressure continues to rise, electrons beneath the coil struggle to migrate to the radial edge to collide with neutral particles, thereby limiting the heating of edge neutral particles.
  • 图 1  ICP中性气体温度多手段测量实验装置

    Figure 1.  ICP neutral gas temperature multi-method measurement experimental apparatus.

    图 2  气压为 1 Pa, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随功率的变化 (a)光纤测温、布拉格光栅、发射光谱测量方法对比; (b)模拟结果

    Figure 2.  Temperature of nitrogen neutral gas at the center of the chamber as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition): (a) Comparison of three measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) simulation results.

    图 3  气压为1 Pa, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气电子密度和电子温度随功率的变化 (a), (c) 探针测量结果; (b), (d) 模拟结果

    Figure 3.  Nitrogen electron density and electron temperature at the center of the chamber as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition): (a), (c) Probe measurement results; (b), (d) simulation results.

    图 4  气压为 1 Pa, 气体流量为50 mL/min (标准状况) 时, 纯氮气放电的EEPF随功率的变化

    Figure 4.  EEPF of pure nitrogen discharge as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition).

    图 5  功率为600 W, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随气压的变化 (a) 光纤测温、布拉格光栅、发射光谱测量方法对比; (b) 电子密度; (c) 电子温度; (d) EEPF

    Figure 5.  Temperature of nitrogen neutral gas at the center of the chamber as a function of pressure at a power of 600 W and gas flow rate of 50 mL/min (standard condition): (a) Comparison of measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) electron density; (c) electron temperature; (d) EEPF.

    图 6  功率为300 W, 气压为1 Pa, 气体流量为70 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随氩含量的变化 (a) 光纤测温、布拉格光栅、发射光谱测量方法对比; (b) 电子密度; (c) 电子温度; (d) EEPF

    Figure 6.  Temperature of nitrogen neutral gas at the center of the chamber as a function of argon content at a power of 300 W, a pressure of 1 Pa, and gas flow rate of 70 mL/min (standard condition): (a) Comparison of measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) electron density; (c) electron temperature; (d) EEPF.

    图 7  固定气压为1 Pa、气体流量为50 mL/min (标准状况)时, 纯氮气放电中在不同高度不同功率下的Tg径向分布特征 (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) 不同轴向高度、不同功率条件下的温度极差趋势图

    Figure 7.  Under fixed gas pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition) the radial distribution characteristics of Tg during pure nitrogen discharge at different power levels at different height: (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) temperature gradient trend diagram under varying axial heights and power conditions.

    图 8  固定功率为 300 W、气体流量为50 mL/min(标准状况)时, 纯氮气放电中在不同高度不同气压下的 Tg径向分布特征 (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) 不同轴向高度、不同功率条件下的温度极差趋势图

    Figure 8.  At a fixed power of 300 W and gas flow rate of 50 mL/min (standard condition), the radial distribution characteristics of Tg under different gas pressures during pure nitrogen discharge at different height: (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) temperature gradient trend diagram under varying axial heights and power conditions.

    表 1  模型中考虑的氮相关反应及系数

    Table 1.  Nitrogen-related reactions and coefficients considered in the model.

    编号反应表达式反应系数/(cm3·s–1)文献
    1$ \text{e}+{\text{N}}_{2}\rightarrow \text{N}_{2}^{+}+2\text{e} $$ 7.76\times {10}^{-9}T_{\text{e}}^{0.79}\text{exp}(-16.75/{T}_{\text{e}}) $[43]
    2$ \text{e}+\text{N}\rightarrow {\text{N}}^{+}+2\text{e} $$ 3.87\times {10}^{-9}T_{\text{e}}^{0.86}\text{exp}(-14.62/{T}_{\text{e}}) $[43]
    3$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}^{+}+\text{N}+2\text{e} $$ 2.90\times {10}^{-9}T_{\text{e}}^{0.72}\text{exp}(-29.71\text{/}{T}_{\text{e}}) $[44]
    4$ \text{e}+{\text{N}}_{2}\rightarrow \text{N}+\text{N}+\text{e} $$ 2.15\times {10}^{-8}\text{exp}(-14.39/{T}_{\text{e}}) $[43]
    5$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{A}\right)+\text{e} $$ 8.06\times {10}^{-10}T_{\text{e}}^{-0.306}\text{exp}(-8.87/{T}_{\text{e}}) $[43]
    6$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{B}\right)+\text{e} $$ 1.56\times {10}^{-8}T_{\text{e}}^{-0.52}\text{exp}(-9.16/{T}_{\text{e}}) $[43]
    7$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left({a}^{\prime} \right)+\text{e} $$ 6.6\times {10}^{-9}T_{\text{e}}^{-0.66}\text{exp}(-11.05/{T}_{\text{e}}) $[43]
    8$ \text{e}+\text{N}_{2}^{+}\rightarrow \text{N}+\text{N} $$ 4.8\times {10}^{-7}\left(0.026/{T}_{\text{e}}\right) $[45]
    9$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\left({a}^{\prime} \right)\rightarrow \text{N}_{2}^{+}+{\text{N}}_{2}+\text{e} $$ 3.2\times {10}^{-12} $[46]
    10$ {\text{N}}_{2}\left({a}^{\prime} \right)+{\text{N}}_{2}\left({a}^{\prime} \right)\rightarrow \text{N}_{2}^{+}+{\text{N}}_{2}+\text{e} $$ 5.0\times {10}^{-11} $[47]
    11$ {\text{N}}_{2}\left(\text{A}\right)+\text{N}\rightarrow {\text{N}}_{2}+\text{N} $$ 2.0\times {10}^{-12} $[44]
    12$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}+{\text{N}}_{2} $$ 3.0\times {10}^{-18} $[48]
    13$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\left(\text{A}\right)\rightarrow {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2} $$ 7.7\times {10}^{-11} $[47]
    14$ {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}+{\text{N}}_{2} $$ 1.5\times {10}^{-12} $[47]
    15$ {\text{N}}_{2}\left({a}^{\prime} \right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2} $$ 1.9\times {10}^{-13} $[49]
    16$ \text{N}+\text{N}+\text{N}\rightarrow {\text{N}}_{2}+\text{N} $$ 1.0\times {10}^{-32} $(cm6·s–1)[50]
    17$ {\text{N}}_{2}\left(\text{B}\right)\rightarrow {\text{N}}_{2}\left(\text{A}\right)+\text{hν} $$ 2.0\times {10}^{-5} $[51]
    注: 其中电子温度用电子伏(eV)为单位
    DownLoad: CSV
  • [1]

    Iliopoulos E, Adikimenakis A, Dimakis E, Tsagaraki K, Konstantinidis G, Georgakilas A 2005 J. Cryst. Growth 278 426Google Scholar

    [2]

    Osaka J, Senthil Kumar M, Toyoda H, Ishijima T, Sugai H, Mizutani T 2007 Appl. Phys. Lett. 90 172114Google Scholar

    [3]

    Kim K Y, Lee H C, Chung C W 2022 Plasma Sources Sci. Technol. 31 105007Google Scholar

    [4]

    Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y 2003 Thin Solid Films 435 259Google Scholar

    [5]

    Agarwal S, Hoex B, van de Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [6]

    高飞, 毛明, 丁振峰, 王友年 2008 物理学报 57 5123Google Scholar

    Gao F, Mao M, Ding Z F, Wang Y N 2008 Acta Phys. Sin. 57 5123Google Scholar

    [7]

    Hebner G A 1996 J. Appl. Phys. 80 2624Google Scholar

    [8]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691Google Scholar

    [9]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [10]

    潘子峰, 陈仙辉, 王斌, 夏维东 2021 物理学报 70 085201Google Scholar

    Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201Google Scholar

    [11]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718Google Scholar

    [12]

    Wang Y J, Huang J W, Zhang Q Z, Zhang Y R, Gao F, Wang Y N 2021 Chin. Phys. B 30 095205 (in Chinese)Google Scholar

    [13]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [14]

    Ostrikov K N, Denysenko I B, Tsakadze E L, Xu S, Storer R G 2002 J. Appl. Phys. 92 4935Google Scholar

    [15]

    Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan M, Sharma S P 2001 J. Appl. Phys. 90 2148Google Scholar

    [16]

    Hebner G A, Miller P A 2000 J. Appl. Phys. 87 8304Google Scholar

    [17]

    Hebner G A 2001 J. Appl. Phys. 89 900Google Scholar

    [18]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718Google Scholar

    [19]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691.Google Scholar

    [20]

    Malyshev M V, Donnelly V M, Downey S W, Colonell J I, Layadi N 2000 J. Vac. Sci. Technol. A 18 849Google Scholar

    [21]

    Kiehlbauch M W, Graves D B 2001 J. Appl. Phys. 89 2047Google Scholar

    [22]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 Appl. Phys. Lett. 81 990Google Scholar

    [23]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 J. Appl. Phys. 91 8955Google Scholar

    [24]

    Schabel M J, Donnelly V M, Kornblit A, Tai W W 2002 J. Vac. Sci. Technol. A 20 555Google Scholar

    [25]

    Palmero A, Cotrino J, Barranco A, Gonzalez-Elipe A R 2002 Phys. Plasmas 9 358Google Scholar

    [26]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022Google Scholar

    [27]

    Han J, Park W, Kim J, Lim K H, Lee G H, In S, Park J, Oh S J, Nam S K, Sung D Y, Moon S Y 2023 Spectrochim. Acta A 302 123389

    [28]

    Du P C, Zhou F J, Zhao K 2022 Appl. Phys. 132 043302Google Scholar

    [29]

    Zhang L 2021 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [30]

    Lv T 2023 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [31]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [32]

    Wen D Q 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [33]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [34]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [35]

    Bakowski B, Hancock G, Peverall R, Ritchie G A D, Thornton L J 2004 J. Phys. D: Appl. Phys. 37 2064Google Scholar

    [36]

    Tuszewski M 2006 J. Appl. Phys. 100 05330

    [37]

    Shimada M, Tynan G R, Cattolica R 2006 J. Vac. Sci. Technol. A 24 1878Google Scholar

    [38]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022Google Scholar

    [39]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691Google Scholar

    [40]

    Biloiu C, Sun X, Harvey Z, Scime E 2007 J. Appl. Phys. 101 073303Google Scholar

    [41]

    Linss V, Kupfer H, Peter S, Richter F 2005 Surf. Coat. Technol. 200 1696Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001Google Scholar

    [43]

    Gudmundsson J T 2005 Report No. RH-09-2005 (University of Iceland

    [44]

    Sode M, Jacob W, Schwarz-Selinger T, Kersten H 2015 J. Appl. Phys. 117 083303

    [45]

    Levaton J, Amorim J, Souza A R, Franco D, Ricard A 2002 J. Phys. D: Appl. Phys. 35 689Google Scholar

    [46]

    Loureiro J 1997 J. Phys. D: Appl. Phys. 30 2320Google Scholar

    [47]

    Guerra V, Loureiro J M A H 1997 Plasma Sources Sci. Technol. 6 361Google Scholar

    [48]

    Pejovic M M, Zivanovic E N, Pejovic M M 2004 J. Phys. D: Appl. Phys. 37 200Google Scholar

    [49]

    Piper L G 1987 J. Chem. Phys. 87 1625

    [50]

    Gordiets B F, Ferreira C M, Guerra V L, Loureiro J M A H, Nahorny J, Pagnon D, Touzeau M, Vialle M 1995 IEEE Trans. Plasma Sci. 23 750Google Scholar

    [51]

    Piper L G 1989 J. Chem. Phys. 91 864Google Scholar

    [52]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [53]

    Kim K Y, Kim J H, Chung C W, Lee H C 2022 Plasma Sources Sci. Technol. 31 105007Google Scholar

    [54]

    Song M A, Lee Y W, Chung T H 2011 Phys. Plasmas 18 023504Google Scholar

    [55]

    Luo Q, Lv T, Wang P Y, Zhou D P, Gao F, Wang Y N 2025 J. Vac. Sci. Technol. A 43 043006Google Scholar

  • [1] ZHANG Yu, LUO Qian, HUANG Gaohuang, GAO Fei, WANG Younian. Two-dimensional fluid simulation of a radio-frequency inductively coupled remote hydrogen plasma source. Acta Physica Sinica, doi: 10.7498/aps.75.20251202
    [2] YUAN Hong, YIN Xianghui, LYU Bo, JIN Yifei, BAE Cheonho, ZHANG Hongming, FU Jia, LIU Haiqing, ZHAO Hailin, ZANG Qing, WANG Fudi, XIANG Dong. Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST. Acta Physica Sinica, doi: 10.7498/aps.74.20241462
    [3] ZHANG Hui, HAN Ning, MENG Xian, CAO Jinwen, SUN Wenjin, LI Mengtian, GENG Jinyue, HUANG Heji. Non-equilibrium characteristics analysis of argon inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.74.20251186
    [4] Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun. Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet. Acta Physica Sinica, doi: 10.7498/aps.71.20220421
    [5] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.70.20201610
    [6] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.68.20190865
    [7] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, doi: 10.7498/aps.64.064213
    [8] Shi Wei-Hua, You Cheng-Jie, Wu Jing. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling. Acta Physica Sinica, doi: 10.7498/aps.64.224221
    [9] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, doi: 10.7498/aps.62.124207
    [10] Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu. Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas. Acta Physica Sinica, doi: 10.7498/aps.62.115202
    [11] Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian. Radial density uniformity of dual frequency capacitively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.61.015204
    [12] Sun Kai, Xin Yu, Huang Xiao-Jiang, Yuan Qiang-Hua, Ning Zhao-Yuan. Characteristics of electron energy distribution function of capacitively coupled plasma excited by 60MHz RF source. Acta Physica Sinica, doi: 10.7498/aps.57.6465
    [13] Gao Fei, Mao Ming, Ding Zhen-Feng, Wang You-Nian. Langmuir probe measurement and theoretical studies on inductively coupled plasma in Ar-N2 discharge. Acta Physica Sinica, doi: 10.7498/aps.57.5123
    [14] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.57.1796
    [15] Ma Xiao-Tao, Zheng Wan-Hua, Ren Gang, Fan Zhong-Chao, Chen Liang-Hui. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.56.977
    [16] Di Xiao-Lian, Xin Yu, Ning Zhao-Yuan. Effect of antenna configuration on power transfer efficiency for planar inductively coupled plasmas. Acta Physica Sinica, doi: 10.7498/aps.55.5311
    [17] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, doi: 10.7498/aps.54.1653
    [18] Huang Song, Ning Zhao-Yuan, Xin Yu, Gan Zhao-Qiang. Characteristics of two-electron-temperature in inductively coupled CF4 plasmas. Acta Physica Sinica, doi: 10.7498/aps.53.3394
    [19] GONG XUE-YU, LIN QIU, SHI BING-REN, LONG YONG-XING. PLASMA TEMPERATURE PROFILE OF D-T BURNING FOR THE BOHM TYPE. Acta Physica Sinica, doi: 10.7498/aps.48.2266
    [20] CHENG CHENG, SUN WEI. RADIAL DISTRIBUTION AND TIME VARIATION OF GAS TEMPERATURE IN CuBr LASERS. Acta Physica Sinica, doi: 10.7498/aps.42.1779
Metrics
  • Abstract views:  517
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2025
  • Accepted Date:  11 October 2025
  • Available Online:  15 October 2025
  • /

    返回文章
    返回