-
Low-temperature inductively coupled radio-frequency plasma is a key plasma source in semiconductor fabrication, wherein the neutral gas temperature (Tg) is one of the critical parameters influencing chemical reactions and plasma characteristics. Precise control of Tg significantly influences processes such as thin-film deposition and reactive ion etching, with its synergistic interaction with plasma parameters (ne, Te) often determining process outcomes. Consequently, a thorough understanding of the evolution of Tg and its correlation with discharge parameters has become a critical issue for optimizing semiconductor manufacturing processes. To achieve more accurate measurements of neutral gas temperature, this work employs three temperature measurement techniques: spectroscopy, Bragg grating, and fiber optic sensing. These methods are used to systematically investigate the variation patterns of neutral gas temperature (Tg) in nitrogen and nitrogen-argon mixed plasmas under different radio-frequency power, gas pressure, and gas composition conditions. To elucidate the gas heating mechanism, this work combines Langmuir probe measurements of electron density, electron temperature, electron energy probability distribution, with a global model simulations. The results show that when the RF power increases, the energy coupled to the plasma increases, the ionization reaction is enhanced, and the collision process and energy transfer between electrons and neutral particles increase, resulting in a monotonically increasing trend of Tg. When gas pressure increases initially, electron density and background gas density jointly rise, enhancing heating efficiency and driving rapid Tg growth. However, beyond 3 Pa, electron mean free path shortens and electron density declines. In contrast, background gas density continues increasing, leading to slower Tg growth.. In nitrogen/argon mixed system discharges, increasing the argon proportion significantly enhances the rate of Tg increase. This occurs because a higher argon ratio elevates the proportion of high-energy electrons and electron density, thereby strengthening ionization and neutral gas heating. Concurrently, argon metastable atoms enhance the density of excited nitrogen particles via the Penning process, promoting nitrogen molecular excitation to higher energy levels and further heating the gas. Additionally, we observe that the radial temperature distribution in pure nitrogen plasma shifts from parabolic to saddle-type with increased axial height, due to intensified electron collision excitation near the coil under electromagnetic field effects. The study also found that the glass transition temperature at the radial edge remained virtually unchanged with increasing atmospheric pressure. This is because, as pressure continues to rise, electrons beneath the coil struggle to migrate to the radial edge to collide with neutral particles, thereby limiting the heating of edge neutral particles.
-
Keywords:
- Neutral gas temperature /
- inductively coupled plasma /
- fibre optic sensing temperature measurement /
- radial distribution
-
[1] E. Iliopoulos, A. Adikimenakis, E. Dimakis, K. Tsagaraki, G. Konstantinidis, A. Georgakilas 2005 J. Cryst. Growth 278 426
[2] J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai, T. Mizutani 2007 Appl. Phys. Lett. 90 172114
[3] Kim K Y, Lee H C, Chung C W 2022 Plasma Sources Sci. Technol. 31 105007
[4] Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y 2003 Thin Solid Films 435 259
[5] Agarwal S, Hoex B, van de Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918
[6] Gao F, Mao M, Ding Z F, Wang Y N 2008 Acta Phys. Sin. 57 5123 (in Chinese) [高飞, 毛明, 丁振峰, 王友年 2008 物理学报 57 5123]
[7] Hebner G A 1996 J. Appl. Phys. 80 2624
[8] Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691
[9] Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese)[杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]
[10] Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201 (in Chinese) [潘子峰, 陈仙辉, 王斌, 夏维东 2021 物理学报 70 085201]
[11] Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718
[12] Wang Y J, Huang J W, Zhang Q Z, Zhang Y R, Gao F, Wang Y N 2021 Chin. Phys. B 30 095205 (in Chinese)
[13] Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467
[14] Ostrikov K N, Denysenko I B, Tsakadze E L, Xu S, Storer R G 2002 J. Appl. Phys. 92 4935
[15] Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan M, Sharma S P 2001 J. Appl. Phys. 90 2148
[16] Hebner G A, Miller P A 2000 J. Appl. Phys. 87 8304
[17] Hebner G A 2001 J. Appl. Phys. 89 900
[18] Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718
[19] Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol.13 691.
[20] Malyshev M V, Donnelly V M, Downey S W, Colonell J I, Layadi N 2000 J. Vac. Sci. Technol. A 18 849
[21] Kiehlbauch M W, Graves D B 2001 J. Appl. Phys. 89 2047
[22] Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 Appl. Phys. Lett. 81 990
[23] Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 J. Appl. Phys. 91 8955
[24] Schabel M J, Donnelly V M, Kornblit A, Tai W W 2002 J. Vac. Sci. Technol. A 20 555
[25] Palmero A, Cotrino J, Barranco A, Gonzalez-Elipe A R 2002 Phys. Plasmas 9 358
[26] Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022
[27] Han J, Park W, Kim J, Lim K H, Lee G H, In S, Park J, Oh S J, Nam S K, Sung D Y, Moon S Y 2023 Spectrochim. Acta A 302 123389
[28] Du P C, Zhou F J, Zhao K 2022 Appl. Phys. 132 043302
[29] Zhang L 2021 Ph.D. Dissertation (Dalian: Dalian University of Technology)
[30] Lv T 2023 Ph.D. Dissertation (Dalian: Dalian University of Technology)
[31] Tong L, Zhao M L, Zhang Y R 2024 Acta Phys. Sin. 73 04215 (in Chinese)
[32] Wen D Q 2018 Ph.D. Dissertation (Dalian: Dalian University of Technology)
[33] Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
[34] Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
[35] Bakowski B, Hancock G, Peverall R, Ritchie G A D, Thornton L J 2004 J. Phys. D: Appl. Phys. 37 2064
[36] Tuszewski M 2006 J. Appl. Phys. 100 05330
[37] Shimada M, Tynan G R, Cattolica R 2006 J. Vac. Sci. Technol. A 24 1878
[38] Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022
[39] Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691
[40] Biloiu C, Sun X, Harvey Z, Scime E 2007 J. Appl. Phys. 101 073303
[41] Linss V, Kupfer H, Peter S, Richter F 2005 Surf. Coat. Technol. 200 1696
[42] Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001
[43] Gudmundsson J T 2005 Report No. RH-09-2005 (University of Iceland)
[44] Sode M, Jacob W, Schwarz-Selinger T, Kersten H 2015 J. Appl. Phys. 117 083303
[45] Levaton J, Amorim J, Souza A R, Franco D, Ricard A 2002 J. Phys. D: Appl. Phys. 35 689
[46] Loureiro J 1997 J. Phys. D: Appl. Phys. 30 2320
[47] Guerra V, Loureiro J M A H 1997 Plasma Sources Sci. Technol. 6 361
[48] Pejovic M M, Zivanovic E N, Pejovic M M 2004 J. Phys. D: Appl. Phys. 37 200
[49] Piper L G 1987 J. Chem. Phys. 87 1625
[50] Gordiets B F, Ferreira C M, Guerra V L, Loureiro J M A H, Nahorny J, Pagnon D, Touzeau M, Vialle M 1995 IEEE Trans. Plasma Sci. 23 750
[51] Piper L G 1989 J. Chem. Phys. 91, 864
[52] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207
[53] Kim K Y, Kim J H, Chung C W, Lee H C 2022 Plasma Sources Sci. Technol. 31 105007
[54] Song M A, Lee Y W, Chung T H 2011 Phys. Plasmas 18 023504
[55] Luo Q, Lv T, Wang P Y, Zhou D P, Gao F, Wang Y N 2025 J. Vac. Sci. Technol. A 43 043006
Metrics
- Abstract views: 22
- PDF Downloads: 0
- Cited By: 0