Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bonder collision bifurcations and co-dimensional bifurcations in a class of Piecewise-Smooth discontinuous mappings

DENG Haozhou WANG Like ZHU Zhaorui WANG Hengtong QU Shixian

Citation:

Bonder collision bifurcations and co-dimensional bifurcations in a class of Piecewise-Smooth discontinuous mappings

DENG Haozhou, WANG Like, ZHU Zhaorui, WANG Hengtong, QU Shixian
cstr: 32037.14.aps.75.20251167
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The study of chaos is an important field in science and has achieved many significant results. In the earlier days of the field, the study mainly focused on the systems that exhibit smooth behaviors throughout. Nonsmooth systems, by contrast, have received less attention. Nonsmooth dynamical systems are widely encountered in practical applications, such as impact oscillators, relaxation oscillators, switch circuits, neuron firing, epidemic models, and even economic models. They have become an active field of study in recent years. The typical characteristics of those systems are the abrupt variation of dynamics following a slow evolution over a longer period of time. Piecewise smooth maps are important models frequently used to describe the dynamics of those systems. Among them, much attention is paid to a class of generally one dimensional piecewise linear discontinuous mappings, as they are easy to handle and can display a rich variety of dynamical phenomena with new characteristics.Included in this work is a discontinuous two-piece mapping function. The left branch is a linear function with slope α, and the right branch is a power law function with exponent z. There exists a gap limited by $[\mu,\mu+\delta]$ at $x=0$, where μ is the control parameter and δ is the width of the gap. Even though the dynamics of nonsmooth and continuous mapping have been extensively studied at some special z values, their discontinuous counterparts have not been investigated at any z and discontinuous gap δ. The presence of a discontinuity may induce border collision bifurcations. The interplay between these bifurcations associated with stability analysis and the border collision bifurcations may produce complex dynamics with new characteristics. Therefore, this work investigates the dynamics of those mappings in which periodic increments, periodic adding and coexistence of attractors are observed. The border collision bifurcation often disrupts a stable periodic orbit, causing it transition into either a chaotic state or a different periodic orbit. Near the critical parameters of this bifurcation, a periodic orbit often coexists with a chaotic or another periodic attractor. A general approach is proposed to analytically and numerically calculate the critical control parameters at which the border collision bifurcations happen, which transform the problem into the solution of an algebraic equation of dimensionless control parameter μ/μ0, where μ0 is the critical control parameter when δ = 0. The solution can be obtained analytically when z is a simple rational number or small integer, and numerically for an arbitrary real number. In this way, the stability condition and critical control parameters for the periodic orbit of type $L^{n-1}R $ are analytically or numerically obtained under the arbitrary exponent z and discontinuous gap δ. The results are in accordance with the numerical simulations very well. Based on the stability and border collision bifurcation analysis, the phase diagrams in the plane of two dimensional parameters μδ are built for different ranges of z. Their dynamical behaviors are discussed, and three types of co-dimension-2 bifurcations are observed, and the general expressions for the coordinates at which those phenomena occur are obtained in the phase plane. Meanwhile, a specular tripe-point induced by merging of co-dimension-2 bifurcation points BC-flip and BC-BC is observed in the phase plane, and the condition for its existence is analytical obtained.
      Corresponding author: QU Shixian, sxqu@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975144).
    [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826Google Scholar

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547Google Scholar

    [3]

    Biswas D, Seth S, Bor M 2020 Int. J. Bifurcation Chaos 30 2050018Google Scholar

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) Nagpur, India, 2020 pp1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dyn. 111 9395Google Scholar

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dyn. 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 J. Sound Vib. 145 279Google Scholar

    [9]

    何大韧, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, 汪秉宏 1993 物理学报 42 711Google Scholar

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711Google Scholar

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335Google Scholar

    [11]

    Tse C K 1994 IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719Google Scholar

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 Int. J. Bifurcation Chaos 30 2030015Google Scholar

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104Google Scholar

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503Google Scholar

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126Google Scholar

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dyn. 105 3763Google Scholar

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908Google Scholar

    [19]

    Banerjee S, Grebogi C 1999 Phys. Rev. E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philos. Trans. A: Math. Phys. Eng. Sci. 368 4915Google Scholar

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phy. B 17 4418Google Scholar

    [22]

    Simpson D J W 2016 Siam Review 58 177Google Scholar

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39Google Scholar

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Phys. Rev. E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 Int. J. Bifurcation Chaos 5 189Google Scholar

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Phys. Lett. A 171 61Google Scholar

    [27]

    屈世显, Christiansen B, 何大韧 1995 物理学报 44 841Google Scholar

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841Google Scholar

    [28]

    Qu S X, Wu S G, He D R 1998 Phys. Rev. E 57 402Google Scholar

    [29]

    王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 物理学报 50 1226Google Scholar

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226Google Scholar

    [30]

    戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979Google Scholar

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979Google Scholar

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519Google Scholar

    [32]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413Google Scholar

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proc. A 477 20210432Google Scholar

    [34]

    Jain P, Banerjee S 2003 Int. J. Bifurcation Chaos 13 3341Google Scholar

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49Google Scholar

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961Google Scholar

    [38]

    Kowalczyk P, Di Bernardo M, Champneys A R, Hogan S J, Homer M, Piiroinen P T, Kuznetsov Y A, Nordmark A 2006 Int. J. Bifurcation Chaos 16 601Google Scholar

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Phys. Rev. E 75 066205Google Scholar

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 Int. J. Bifurcation Chaos 22 1250112Google Scholar

    [41]

    Gardini L, Avrutin V, Sushko I 2014 Int. J. Bifurcation Chaos24 1450024Google Scholar

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Phys. Lett. A 560 130935Google Scholar

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360Google Scholar

  • 图 1  轨道碰撞到$ x=0^{-} $ (a)和$ x=0^{+} $ (b)时的边界碰撞分岔示意图

    Figure 1.  Illustration of the border collision bifurcation occurs at $ x=0^{-} $ (a) and $ x=0^{+} $ (b), respectively.

    图 2  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期轨道的分岔临界线 (a) 临界线 $ n=2 $, $\alpha=0.6 $; (b) 临界线$ n=3,\ \alpha=0.618 $

    Figure 2.  Critical curves for bifurcations of $ L^{n-1}R $ periodic orbits in $ \mu\text{-}\delta $: (a) Critical curves $ n=2 $, $\alpha=0.6$; (b) critical curves $n=3 $, $\alpha=0.618 $

    图 3  $ z=1/2 $, $ \alpha=0.6 $, $ \beta=-3 $时, $ \mu\text{-}\delta $相平面上$ L^{n-1}R $周期轨道分岔临界线和分岔图 (a) $ \mu\text{-}\delta $相平面上分岔临界线, $ L^{n-1}R^{ } $稳定周期轨道存在区域. (b)—(d) 不同δ取值时的分岔图. 绿色水平虚线标识不连续边界, 蓝色和红色和粉红色竖直虚线分别标识flip分岔和$ \rm BC^- $边界碰撞分岔临界控制参数的解析值$ \mu_{n, {\rm{flip}}} $和$ \mu_{n, {\rm{BC}}^{-}} $

    Figure 3.  Critical bifurcation curve of period $ L^{n-1}R $ and bifurcation diagrams when $ z=1/2 $, $ \alpha=0.6 $ and $ \beta=-3 $: (a) Critical bifurcation curve in the $ \mu\text{-}\delta $ plane. The regions where the stable $ ^{ }L^{n-1}R $ orbits exit. (b)–(d) Bifurcation diagrams for different δ. The green dashed horizontal lines mark the discontinuous border of the map. The vertical dashed-lines of blue and red colors indicate the analytical values $ \mu_{n, {\rm{flip}}} $ and $ \mu_{n, {\rm{BC}}^{-}} $ of the critical control parameters for the flip and $ \rm BC^- $ border collision bifurcations, respectively.

    图 4  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期轨道的分岔临界线($ z=1.5 $, $ \alpha=0.6 $, $ \beta=-3 $) (a) 临界线$ n=2 $; (b) $ L^{n-1}R $周期轨道稳定存在区域

    Figure 4.  Critical curves for bifurcations of $ L^{n-1}R $ periodic orbits in $ \mu\text{-}\delta $ phase plain when $ z=1.5 $, $ \alpha=0.6 $ and $ \beta=-3 $: (a) Critical curves $ n=2 $; (b) the regions where the stable $ L^{n-1}R $ orbits exit.

    图 5  $ z=1.5 $, $ \alpha=0.6 $, $ \beta=-3 $, δ取值不同时的分岔图. 绿色水平虚线标识不连续边界, 蓝色、红色和粉红色竖直虚线分别标识flip分岔、BC和BC+边界碰撞分岔临界控制参数的解析值$ \mu_{n, {\rm{flip}}} $, $ \mu_{n, {\rm{BC}}^{-}} $和$ \mu_{n, {\rm{BC}}^{+}} $

    Figure 5.  Bifurcation diagrams for different δ when $ z=1.5 $, $ \alpha=0.6 $ and $ \beta=-3 $. The green dashed horizontal lines mark the discontinuous border of the map. The vertical dashed-lines of blue, red and magenta colors indicate the analytical values $ \mu_{n, {\rm{flip}}} $, $ \mu_{n, {\rm{BC}}^{-}} $ and $ \mu_{n, {\rm{BC}}^{+}} $ of the critical control parameters for the flip, BC and BC+ border collision bifurcations, respectively.

    图 6  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期的分岔曲线, 其中, $ z=-0.6 $, $ \alpha=0.6 $, $ \beta=-3 $. 彩色区域为周期轨道稳定区域, 其蓝色左边界为fold分岔的临界线$ \mu_{n, {\rm{fold}}} $, 其红色右边界为碰撞分岔临界线$ \mu_{n, {\rm{BC}}^{-}} $, 区间外为禁止区域

    Figure 6.  Critical bifurcation curves in phase space $ \mu\text{-}\delta $, where $ z=-0.6, \;\alpha=0.6 $ and $ \beta=-3 $. The stable $ L^{n-1}R $ periodic orbits are permitted in the colored areas, in which the blue-lines and the red-lines mark the critical curves $ \mu_{n, {\rm{fold}}} $ and $ \mu_{n, {\rm{BC}}^{-}} $ of the fold and border collision bifurcations, respectively. Those orbits are prohibited out of the colored regions.

    表 1  $ z=1/2 $, $ \alpha=0.6 $和$ \beta=-3 $时, 三种分岔的临界控制参数

    Table 1.  Critical control parameters for three kinds of bifurcations when $ z=1/2 $, $ \alpha=0.6 $ and $ \beta=-3 $.

    δ n $ \mu_{n, \rm BC^+} $ $ \mu^\prime_{n, \rm BC^–} $ $ \mu_{n, \rm BC^–} $ $ \mu_{n, \rm flip} $
    214.75000
    221.000004.00000
    0.400516.3495
    0.400520.019618.179391.36856
    0.400530.023960.941290.37277
    0.400540.051570.10493
    –313.000009.75000
    –321.1250014.37392.64375
    –330.5510203.108470.997347
    –340.2977941.139120.442522
    –350.1686330.5105830.217806
    –360.09787860.2535450.115003
    DownLoad: CSV

    表 2  $ z=3/2 $, $ \alpha=0.6 $和$ \beta=-3 $时, 三种分岔的临界控制参数

    Table 2.  Critical control parameters for three kinds of bifurcations when $ z=3/2 $, $ \alpha=0.6 $ and $ \beta=-3 $.

    δ n $ \mu_{n, \rm BC^+} $ $ \mu^\prime_{n, \rm BC^-} $ $ \mu_{n, \rm BC^-} $ $ \mu_{n, \rm flip} $
    0.002 1 0.08031
    0.002 2 0.11501 0.14214
    –0.01 1 0.01 0.0923
    –0.01 2 0.00375 0.01617 0.08705 0.14664
    –0.01 3 0.00184 0.00404
    –0.01 4 0.000993 0.001882
    –0.01 ··· ··· ··· ··· ···
    –0.312 1 0.312 0.39431
    –0.312 2 0.117 0.25989
    –0.312 3 0.05731 0.34237 0.36 0.38132
    –0.312 4 0.03097 0.06682
    –0.312 5 0.01754 0.03273
    –0.312 ··· ··· ··· ··· ···
    –10.5 3 1.92857 2.25258
    –10.5 4 1.04228 1.85297
    –10.5 5 0.59022 1.70563
    –10.5 6 0.34258 0.68604
    –10.5 7 0.2016 0.36408
    –10.5 ··· ··· ··· ··· ···
    DownLoad: CSV
  • [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826Google Scholar

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547Google Scholar

    [3]

    Biswas D, Seth S, Bor M 2020 Int. J. Bifurcation Chaos 30 2050018Google Scholar

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) Nagpur, India, 2020 pp1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dyn. 111 9395Google Scholar

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dyn. 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 J. Sound Vib. 145 279Google Scholar

    [9]

    何大韧, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, 汪秉宏 1993 物理学报 42 711Google Scholar

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711Google Scholar

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335Google Scholar

    [11]

    Tse C K 1994 IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719Google Scholar

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 Int. J. Bifurcation Chaos 30 2030015Google Scholar

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104Google Scholar

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503Google Scholar

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126Google Scholar

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dyn. 105 3763Google Scholar

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908Google Scholar

    [19]

    Banerjee S, Grebogi C 1999 Phys. Rev. E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philos. Trans. A: Math. Phys. Eng. Sci. 368 4915Google Scholar

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phy. B 17 4418Google Scholar

    [22]

    Simpson D J W 2016 Siam Review 58 177Google Scholar

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39Google Scholar

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Phys. Rev. E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 Int. J. Bifurcation Chaos 5 189Google Scholar

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Phys. Lett. A 171 61Google Scholar

    [27]

    屈世显, Christiansen B, 何大韧 1995 物理学报 44 841Google Scholar

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841Google Scholar

    [28]

    Qu S X, Wu S G, He D R 1998 Phys. Rev. E 57 402Google Scholar

    [29]

    王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 物理学报 50 1226Google Scholar

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226Google Scholar

    [30]

    戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979Google Scholar

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979Google Scholar

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519Google Scholar

    [32]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413Google Scholar

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proc. A 477 20210432Google Scholar

    [34]

    Jain P, Banerjee S 2003 Int. J. Bifurcation Chaos 13 3341Google Scholar

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49Google Scholar

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961Google Scholar

    [38]

    Kowalczyk P, Di Bernardo M, Champneys A R, Hogan S J, Homer M, Piiroinen P T, Kuznetsov Y A, Nordmark A 2006 Int. J. Bifurcation Chaos 16 601Google Scholar

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Phys. Rev. E 75 066205Google Scholar

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 Int. J. Bifurcation Chaos 22 1250112Google Scholar

    [41]

    Gardini L, Avrutin V, Sushko I 2014 Int. J. Bifurcation Chaos24 1450024Google Scholar

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Phys. Lett. A 560 130935Google Scholar

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360Google Scholar

  • [1] GUO Qun, XU Ying. Analysis of dynamics and energy consumption in capacitor-free memristive neural circuit. Acta Physica Sinica, 2026, 75(1): 010001. doi: 10.7498/aps.75.20251114
    [2] Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua. Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances. Acta Physica Sinica, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [3] Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei. Analysis of stability catastrophe of confocal cavity. Acta Physica Sinica, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [4] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [5] Sun Di-Hua, Kang Yi-Rong, Li Hua-Min. Analysis of evolution mechanism of traffic energy dissipation by considering driver’s forecast effect. Acta Physica Sinica, 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [6] Shi Guo-Dong, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei. Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter. Acta Physica Sinica, 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [7] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [8] Yang Ke-Li. Period-adding bifurcations in a discontinuous system with a variable gap. Acta Physica Sinica, 2015, 64(12): 120502. doi: 10.7498/aps.64.120502
    [9] Zhong Shu, Sha Jin, Xu Jian-Ping, Xu Li-Jun, Zhou Guo-Hua. Low-frequency oscillation of continuous conduction mode buck converter with pulse skipped modulation. Acta Physica Sinica, 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [10] Yang Ping, Xu Jian-Ping, He Sheng-Zhong, Bao Bo-Cheng. Dynamics of current controlled quadratic boost converters. Acta Physica Sinica, 2013, 62(16): 160501. doi: 10.7498/aps.62.160501
    [11] Wu Song-Rong, He Sheng-Zhong, Xu Jian-Ping, Zhou Guo-Hua, Wang Jin-Ping. Dynamical modeling and multi-period behavior analysis of voltage-mode bi-frequency controlled switching converter. Acta Physica Sinica, 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [12] Bao Bo-Cheng, Yang Ping, Ma Zheng-Hua, Zhang Xi. Dynamics of current controlled switching converters under wide circuit parameter variation. Acta Physica Sinica, 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [13] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [14] Tan Hong-Fang, Jin Tao, Qu Shi-Xian. Frozen random patterns in a globally coupled discontinuous map lattices system. Acta Physica Sinica, 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [15] Sha Jin, Bao Bo-Cheng, Xu Jian-Ping, Gao Yu. Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter. Acta Physica Sinica, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [16] Sun Ning, Zhang Hua-Guang, Wang Zhi-Liang. Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems. Acta Physica Sinica, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [17] Yang Tan, Jin Yue-Hui, Cheng Shi-Duan. Border collision bifurcation and chaotic control of discrete feedback transmission control protocol-random early detection system. Acta Physica Sinica, 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [18] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] Wang Tao, Gao Zi-You, Zhao Xiao-Mei. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [20] Dai Dong, Ma Xi-Kui, Li Xiao-Feng. Border collision bifurcations and chaos in a class of piecewise smooth systems w ith two boundaries. Acta Physica Sinica, 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
Metrics
  • Abstract views:  674
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  25 August 2025
  • Accepted Date:  19 October 2025
  • Available Online:  22 October 2025
  • Published Online:  05 January 2026
  • /

    返回文章
    返回