Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zero resistance and strange metal behavior of high-temperature superconducting material La3Ni2O7

YE Kaixin ZHANG Yanan JIAO Lin YUAN Huiqiu

Citation:

Zero resistance and strange metal behavior of high-temperature superconducting material La3Ni2O7

YE Kaixin, ZHANG Yanan, JIAO Lin, YUAN Huiqiu
cstr: 32037.14.aps.75.20251207
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In 2023, signatures of pressure-induced high-temperature superconductivity with an onset transition at 80 K were observed in La3Ni2O7. However, the absence of zero resistance cast doubts on its superconductivity. By using a recently developed quasi-hydrostatic pressure technique based on a diamond anvil cell, our group successfully observe a sharp superconducting transition with a zero resistance below 40 K, providing a crucial evidence for establishing the existence of high-temperature superconductivity in La3Ni2O7. Furthermore, a pronounced linear-temperature dependent resistivity is observed above its superconducting transition, suggesting an unconventional nature of its superconducting pairing state.In addition to the discovery of zero resistance, our transport study also revises the pressure-temperature phase diagram of La3Ni2O7. It is found that La3Ni2O7 remains metallic under pressure and there is no evidence for a metal-insulator transition if the samples are properly handled during preparations. Upon increasing pressure, the density wave transition, observed near 130 K at ambient pressure, is quickly suppressed. At approximately 13.7 GPa, evidence for a pressure-induced structural phase transition is observed near 250 K, followed by a superconducting transition with an onset temperature at $ T_{\mathrm{c}}^{\text{onset}}\approx $ 37.5 K. $ {T}_{\mathrm{c}} $ initially increases with the increase of pressure, reaching a maximum value of $ T_{\mathrm{c}}^{\text{onset}}\approx $ 66 K at 20.5 GPa. On the other hand, the slope $ {A}' $ of the T-linear resistivity above $ {T}_{\mathrm{c}} $ monotonically decreases with the increase of pressure, showing a relation of $ {T}_{\mathrm{c}}\propto \sqrt{{A}'} $ above 20.5 GPa, which is similar to those recently observed in the cuprate superconductors. Furthermore, the inverse Hall coefficient 1/RH, derived from the Hall resistance measurements, reveals a notable increase at pressures above 15 GPa upon entering the high pressure phase, suggesting a substantial increase of the carrier concentration in the superconducting regime, which is further supported by band structure calculations.In this work, we present a brief summary of our research advances, and compare them with those observed in other nickelate superconductors.
      Corresponding author: JIAO Lin, lin.jiao@zju.edu.cn ; YUAN Huiqiu, hqyuan@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12494592, 12034017) and the National Key Research and Development Program of China (Grant No. 2022YFA1402200).
    [1]

    Bednorz J G, Müller K A 1986 Z. Für Phys. B Condens. Matter 64 189Google Scholar

    [2]

    Sun G F, Wong K W, Xu B R, Xin Y, Lu D F 1994 Phys. Lett. A 192 122Google Scholar

    [3]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [4]

    Lacorre Ph 1992 J. Solid State Chem. 97 495Google Scholar

    [5]

    Poltavets V V, Lokshin K A, Dikmen S, Croft M, Egami T, Greenblatt M 2006 J. Am. Chem. Soc. 128 9050Google Scholar

    [6]

    Levitz P, Crespin M, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 79 1195Google Scholar

    [7]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [8]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [9]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [10]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [11]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 7950Google Scholar

    [12]

    Norman M R 2020 Physics 13 85Google Scholar

    [13]

    Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, Cheng J G 2022 Nat. Commun. 13 4367Google Scholar

    [14]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [15]

    Sun W J, Jiang Z C, Xia C L, Hao B, Yan S J, Wang M S, Li Y Y, Liu H Q, Ding J Y, Liu J Y, Liu Z T, Liu J S, Chen H H, Shen D W, Nie Y F 2025 Sci. Adv. 11 eadr5116Google Scholar

    [16]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [17]

    Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, Hwang H Y 2021 Nat. Phys. 17 473Google Scholar

    [18]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [19]

    Chow L E, Sudheesh S K, Luo Z Y, Nandi P, Heil T, Deuschle J, Zeng S W, Zhang Z T, Prakash S, Du X M, Lim Z S, Aken P A van, Chia E E M, Ariando A 2023 arXiv: 2201.10038 [cond-mat.supr-con]Google Scholar

    [20]

    Chow L E, Yip K Y, Pierre M, Zeng S W, Zhang Z T, Heil T, Deuschle J, Nandi P, Sudheesh S K, Lim Z S, Luo Z Y, Nardone M, Zitouni A, Aken P A van, Goiran M, Goh S K, Escoffier W, Ariando A 2022 arXiv: 2204.12606 [cond-mat. supr-con]Google Scholar

    [21]

    Wang B Y, Wang T C, Hsu Y T, Osada M, Lee K, Jia C, Duffy C, Li D, Fowlie J, Beasley M R, Devereaux T P, Fisher I R, Hussey N E, Hwang H Y 2023 Sci. Adv. 9 eadf6655Google Scholar

    [22]

    Harvey S P, Wang B Y, Fowlie J, Osada M, Lee K, Lee Y, Li D, Hwang H Y 2022 arXiv: 2201.12971 [cond-mat.supr-con]Google Scholar

    [23]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [24]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [25]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [26]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H, Sun L L 2025 Matter Radiat. Extrem. 10 027801Google Scholar

    [27]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [28]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H, Wang M 2025 National Science Review 12 10Google Scholar

    [29]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [30]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [31]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [32]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [33]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [34]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [35]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [36]

    Ni X S, Ji Y Y, He L X, Xie T, Yao D X, Wang M, Cao K 2025 Npj Quantum Mater. 10 17Google Scholar

    [37]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [38]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [39]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [40]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 Nature Physics 21 11Google Scholar

    [41]

    Zhang Y N, Su D J, Shan Z Y, Yang Z H, Zhang J W, Li R, Smidman M, Yuan H Q 2023 Phys. Rev. B 108 094502Google Scholar

    [42]

    Zhang J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [43]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [44]

    Jiang X Y, Qin M Y, Wei X J, Xu L, Ke J Z, Zhu H P, Zhang R Z, Zhao Z Y, Liang Q M, Wei Z X, Lin Z F, Feng Z P, Chen F C, Xiong P Y, Yuan J, Zhu B Y, Li Y M, Xi C Y, Wang Z S, Yang M, Wang J F, Xiang T, Hu J P, Jiang K, Chen Q H, Jin K, Zhao Z X 2023 Nat. Phys. 19 365Google Scholar

    [45]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [46]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [47]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [48]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560Google Scholar

    [49]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [50]

    Sasaki H, Harashina H, Taniguchi S, Kasai M, Kobayashi Y, Sato M, Kobayashi T, Ikeda T, Takata M, Sakata M 1997 J. Phys. Soc. Jpn. 66 1693Google Scholar

    [51]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [52]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [53]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [54]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [55]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [56]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [57]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [58]

    Yang Y, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [59]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [60]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [61]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [62]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [63]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [64]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [65]

    Zhou G D, Lü W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [66]

    Li P, Zhou G D, Lü W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. 12 nwaf205Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M, Wang R H, Li J R, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]Google Scholar

    [68]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [69]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 Phys. Rev. B 112 L100506Google Scholar

    [70]

    Yoshiaki K, Satoshi T, Mayumi K, Masatoshi S, Takashi N, Masaaki K 2013 J. Phys. Soc. Jpn. 65 3978Google Scholar

    [71]

    Xu S X, Wang H, Huo M W, Hu D Y, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N L 2025 Nat. Commun. 16 7039Google Scholar

    [72]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [73]

    Li F Y, Xing Z F, Peng D, Dou J, Guo N, Ma L, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zeng Z D, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 Nature https:// doi.org/10.1038/s41586-025-09954-4Google Scholar

    [74]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 Nat. Commun. 16 2887Google Scholar

  • 图 1  (a) Lan+1NinO3n+1和(b) Lan+1NinO2n+2的晶体结构

    Figure 1.  Crystal structure of (a) Lan+1NinO3n+1 and (b) Lan+1NinO2n+2.

    图 2  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $中的超导迹象[23]

    Figure 2.  Signatures of superconductivity in $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $[23].

    图 3  (a) 金刚石对顶砧压力胞示意图; (b) 压腔内部示意图; (c) 显微镜下高压腔体内部照片

    Figure 3.  (a) Schematic diagram of the diamond anvil cell; (b) schematic diagram of the pressure chamber; (c) photo of the pressure chamber under a microscope.

    图 4  La3Ni2O7单晶在20.5 GPa压力下, 电阻随温度的变化曲线[24]

    Figure 4.  The R-T curve of single crystal La3Ni2O7 at 20.5 GPa [24].

    图 5  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $单晶样品S1-1, S1-2, S1-3在压力下的电阻曲线[24]

    Figure 5.  Resistance curves of $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $ single crystal samples S1-1, S1-2, and S1-3 under pressure[24].

    图 6  $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $单晶样品S2-1, S2-2, S2-3, S2-4在压力下的电阻曲线[24]

    Figure 6.  Resistance curves of $ {\text{La}}_{3}{\text{Ni}}_{2}{\mathrm{O}}_{7-\delta } $ single crystal samples S2-1, S2-2, S2-3, and S2-4 under pressure[24].

    图 7  (a) 超导转变与线性电阻行为随压力的演化, 为清晰起见, 电阻曲线在垂直方向上进行了等量平移[24]; (b) 归一化的$ \sqrt{{A}{'}} $与临界温度$ {T}_{\mathrm{c}} $的关系[24]

    Figure 7.  (a) Evolution of superconducting transition and linear resistance behavior with pressure, for clarity, the resistance curves have been shifted equally in the vertical direction [24]; (b) relationship between normalized $ \sqrt{{A}{'}} $ and critical temperature $ {T}_{\mathrm{c}} $[24].

    图 8  (a) 在0—2 GPa压力范围内, La3Ni2O7电阻曲线随压力演化[24]; (b) 电阻微分曲线. 为清晰起见, 曲线进行了等量偏移[24]

    Figure 8.  (a) Resistance curves of La3Ni2O7 with pressure from 0 GPa to 2 GPa[24]; (b) the differential resistance curves. For clarity, the curves have been shifted equally[24].

    图 9  (a) La3Ni2O7单晶样品在13.7 GPa的升降温电阻曲线, 其中红色对应于升温过程, 黑色对应于降温过程[24]; (b) 常压条件下La3Ni2O7多晶样品的升降温电阻曲线, 该化合物在550 K发生结构相变[45]

    Figure 9.  (a) Resistance curves of La3Ni2O7 single crystal at 13.7 GPa, where the red curve represents the heating process and the black one represents the cooling process[24]; (b) resistance curves of La3Ni2O7 polycrystalline sample under ambient pressure, it undergoes a structural phase transition at 550 K[45].

    图 10  霍尔系数的倒数$ 1/{R}_{\mathrm{H}} $随压力的演化, 结构转变区域用斜纹突出显示[24]

    Figure 10.  Evolution of the reciprocal of the Hall coefficient $ 1/{R}_{\mathrm{H}} $ with pressure, and the structural transformation region is highlighted by dashed lines[24].

    图 11  La3Ni2O7的温度-压力相图, 低压的密度波(DW)转变随压力增加被逐渐抑制; 压力下, La3Ni2O7发生AmamI4mmm的结构转变, 虚线示意了可能的结构相变. 高温超导和奇异金属相出现于高压的I4mmm结构相

    Figure 11.  Temperature-pressure phase diagram of La3Ni2O7, the density wave transition is gradually suppressed with increasing pressure, La3Ni2O7 undergoes a structural transformation from Amam to I4mmm, and the dotted line indicates the possible phase boundary between these two structures. High-temperature superconductivity and strange metal phase occur in the I4mmm structure.

    图 12  (a) $ {\text{La}}_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $的温度-压力相图[39]; (b) $ {\text{La}}_{5}{\text{Ni}}_{3}{\mathrm{O}}_{11} $的温度-压力相图[40]; (c) $ {\Pr }_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $的温度-压力相图[72]

    Figure 12.  Temperature-pressure phase diagram of (a) $ {\text{La}}_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $[39], (b) $ {\text{La}}_{5}{\text{Ni}}_{3}{\mathrm{O}}_{11} $[40] and (c) $ {\Pr }_{4}{\text{Ni}}_{3}{\mathrm{O}}_{10} $[72].

  • [1]

    Bednorz J G, Müller K A 1986 Z. Für Phys. B Condens. Matter 64 189Google Scholar

    [2]

    Sun G F, Wong K W, Xu B R, Xin Y, Lu D F 1994 Phys. Lett. A 192 122Google Scholar

    [3]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [4]

    Lacorre Ph 1992 J. Solid State Chem. 97 495Google Scholar

    [5]

    Poltavets V V, Lokshin K A, Dikmen S, Croft M, Egami T, Greenblatt M 2006 J. Am. Chem. Soc. 128 9050Google Scholar

    [6]

    Levitz P, Crespin M, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 79 1195Google Scholar

    [7]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [8]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [9]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [10]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [11]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 7950Google Scholar

    [12]

    Norman M R 2020 Physics 13 85Google Scholar

    [13]

    Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, Cheng J G 2022 Nat. Commun. 13 4367Google Scholar

    [14]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [15]

    Sun W J, Jiang Z C, Xia C L, Hao B, Yan S J, Wang M S, Li Y Y, Liu H Q, Ding J Y, Liu J Y, Liu Z T, Liu J S, Chen H H, Shen D W, Nie Y F 2025 Sci. Adv. 11 eadr5116Google Scholar

    [16]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [17]

    Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, Hwang H Y 2021 Nat. Phys. 17 473Google Scholar

    [18]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [19]

    Chow L E, Sudheesh S K, Luo Z Y, Nandi P, Heil T, Deuschle J, Zeng S W, Zhang Z T, Prakash S, Du X M, Lim Z S, Aken P A van, Chia E E M, Ariando A 2023 arXiv: 2201.10038 [cond-mat.supr-con]Google Scholar

    [20]

    Chow L E, Yip K Y, Pierre M, Zeng S W, Zhang Z T, Heil T, Deuschle J, Nandi P, Sudheesh S K, Lim Z S, Luo Z Y, Nardone M, Zitouni A, Aken P A van, Goiran M, Goh S K, Escoffier W, Ariando A 2022 arXiv: 2204.12606 [cond-mat. supr-con]Google Scholar

    [21]

    Wang B Y, Wang T C, Hsu Y T, Osada M, Lee K, Jia C, Duffy C, Li D, Fowlie J, Beasley M R, Devereaux T P, Fisher I R, Hussey N E, Hwang H Y 2023 Sci. Adv. 9 eadf6655Google Scholar

    [22]

    Harvey S P, Wang B Y, Fowlie J, Osada M, Lee K, Lee Y, Li D, Hwang H Y 2022 arXiv: 2201.12971 [cond-mat.supr-con]Google Scholar

    [23]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [24]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [25]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [26]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H, Sun L L 2025 Matter Radiat. Extrem. 10 027801Google Scholar

    [27]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [28]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H, Wang M 2025 National Science Review 12 10Google Scholar

    [29]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [30]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [31]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [32]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [33]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [34]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [35]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [36]

    Ni X S, Ji Y Y, He L X, Xie T, Yao D X, Wang M, Cao K 2025 Npj Quantum Mater. 10 17Google Scholar

    [37]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [38]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [39]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [40]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 Nature Physics 21 11Google Scholar

    [41]

    Zhang Y N, Su D J, Shan Z Y, Yang Z H, Zhang J W, Li R, Smidman M, Yuan H Q 2023 Phys. Rev. B 108 094502Google Scholar

    [42]

    Zhang J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [43]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [44]

    Jiang X Y, Qin M Y, Wei X J, Xu L, Ke J Z, Zhu H P, Zhang R Z, Zhao Z Y, Liang Q M, Wei Z X, Lin Z F, Feng Z P, Chen F C, Xiong P Y, Yuan J, Zhu B Y, Li Y M, Xi C Y, Wang Z S, Yang M, Wang J F, Xiang T, Hu J P, Jiang K, Chen Q H, Jin K, Zhao Z X 2023 Nat. Phys. 19 365Google Scholar

    [45]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [46]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [47]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [48]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2025 Nat. Commun. 16 6560Google Scholar

    [49]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [50]

    Sasaki H, Harashina H, Taniguchi S, Kasai M, Kobayashi Y, Sato M, Kobayashi T, Ikeda T, Takata M, Sakata M 1997 J. Phys. Soc. Jpn. 66 1693Google Scholar

    [51]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [52]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [53]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [54]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [55]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [56]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [57]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [58]

    Yang Y, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [59]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [60]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [61]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [62]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [63]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [64]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [65]

    Zhou G D, Lü W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [66]

    Li P, Zhou G D, Lü W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. 12 nwaf205Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M, Wang R H, Li J R, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]Google Scholar

    [68]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [69]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 Phys. Rev. B 112 L100506Google Scholar

    [70]

    Yoshiaki K, Satoshi T, Mayumi K, Masatoshi S, Takashi N, Masaaki K 2013 J. Phys. Soc. Jpn. 65 3978Google Scholar

    [71]

    Xu S X, Wang H, Huo M W, Hu D Y, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N L 2025 Nat. Commun. 16 7039Google Scholar

    [72]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [73]

    Li F Y, Xing Z F, Peng D, Dou J, Guo N, Ma L, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zeng Z D, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 Nature https:// doi.org/10.1038/s41586-025-09954-4Google Scholar

    [74]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 Nat. Commun. 16 2887Google Scholar

  • [1] YIN Xuetong, LIAO Dunyuan, PAN Dong, WANG Peng, LIU Bingbing. Room-temperature photoluminescence in GaAsSb nanowires under high-pressure. Acta Physica Sinica, 2025, 74(6): 067802. doi: 10.7498/aps.74.20250042
    [2] LI Chenkai, ZHU Jinlong. Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures. Acta Physica Sinica, 2025, 74(17): 176802. doi: 10.7498/aps.74.20250498
    [3] Guo Jing, Wu Qi, Sun Li-Ling. Discovery of robust superconductivity against volume shrinkage. Acta Physica Sinica, 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [4] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [5] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [6] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [7] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [8] Yi Wei, Wu Qi, Sun Li-Ling. Superconductivities of pressurized iron pnictide superconductors. Acta Physica Sinica, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [9] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [10] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [11] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [12] Bai Jun-Xue, Guo Wei-Ling, Sun Jie, Fan Xing, Han Yu, Sun Xiao, Xu Ru, Lei Jun. Research on the relationship between ideality factor and number of units of GaN-based high voltage light-emitting diode. Acta Physica Sinica, 2015, 64(1): 017303. doi: 10.7498/aps.64.017303
    [13] Zhang Yan, Wang Yue, Ma Ping, Feng Qing-Rong. Study on single crystal MgB2 nanosheets grown by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2014, 63(23): 237401. doi: 10.7498/aps.63.237401
    [14] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [15] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [16] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [17] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [18] Wu Bao-Jia, Han Yong-Hao, Peng Gang, Liu Cai-Long, Wang Yue, Gao Chun-Xiao. Research of in-situ electrical property of micron dimension ZnO under high pressure. Acta Physica Sinica, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [19] Liang Yong-Cheng, Guo Wan-Lin, Fang Zhong. First principles studies of low-compressibility of transition-metal compounds OsB2 and OsO2. Acta Physica Sinica, 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
    [20] Wang Xiu-Ying, Sun Li-Ling, Liu Ri-Ping, Yao Yu-Shu , Zhang Jun, Wang Wen-Kui. Diffusion of Co in Zr_46.75Ti_8.25Cu_7.5Ni_10Be_27.5 bulk metallic glass in supercooled liquid region under high pressure. Acta Physica Sinica, 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
Metrics
  • Abstract views:  627
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2025
  • Accepted Date:  09 October 2025
  • Available Online:  20 October 2025
  • Published Online:  05 January 2026
  • /

    返回文章
    返回