-
Electron-ion collision is one of the fundamental processes in atomic and molecular physics, and the study of this process can provide insight into the mechanism of electron-atom/ion interaction. It has important applications in plasma physics and astrophysics. Accurate electron-impact cross-sections are important in plasma modeling. In generally, total EISI cross-sections consists of the direct ionization (DI) and the indirect ionization processes, with the latter further divided into excitation autoionization (EA), resonant excitation double auto-ionization (REDA) and resonant excitation auto- double ionization (READI) processes. In this work, the electron-impact single ionization (EISI) crosssections for the ground state [Kr]4d105s24f13 of W13+ ions are calculated in detail by using the level-to-level distorted-wave (LLDW) method, which mainly includes the contributions of direct ionization (DI) and excited auto-ionization (EA) cross-sections to the EISI cross-sections. Our computational results demonstrate that when configuration interaction are incorporated, the calculated values show excellent agreement with experimental data for electron impact energies exceeding 500 eV. However, significant discrepancies persist near the ionization threshold. we have confirmed that these discrepancies primarily originate from the presence of long-lived metastable ions. To achieve better agreement with experimental observations, we further calculated EISI cross-sections for 71 energy levels of the metastable state 4 d10 5 s2 4 f12 5p with lifetimes greater than 1.5×10-5s. The total EISI cross-sections of these 71 energy levels were obtained by theoretical fitting and compared with the experimental results by Schury et al. (Figure), and it was found that our results were in good agreement with the experimental results of Schury et al. after considering the contribution of long-lived metastable.
-
Keywords:
- Tungsten ions /
- Electron-impact single ionization /
- Metastable states /
- DI /
- EA
-
[1] Müller A 2008 Adv. At. Mol. Opt. Phys. 55 293
[2] Dai J, Hou Y, Yuan J 2010 Phys. Rev. Lett 104 245001
[3] Nakamura N, Tobiyama H, Nohara H, Kato D, Watanabe H, Currell F J, Ohtani S 2006 Phys. Rev. A 73 020705
[4] Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 075201
[5] Zhang D H, Kwon D H. 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075202
[6] Kynienė A, Merkelis G, Šukys A, Masys Š, Pakalka S, Kisielius R, Jonauskas V 2018 J. Phys. B: At. Mol. Opt. Phys. 51 155202
[7] Müller A. 2015 Atoms. 3 120
[8] Skinner C H 2009 Phys Scr. T134 014022
[9] Montague R G, Harrison M F A, Smith A C H 1984 J. Phys. B: At. Mol. Phys.17 3295
[10] Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711
[11] Stenke M, Aichele K, Hathiramani D, Hofmann G, Steidl M, Volpel R, Shevelko V P, Tawara H, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4853
[12] Rausch J, Becker A, Spruck K, Hellhund J, Schippers S, Borovik A, Huber K, Müller A 2012 J Phys: Conf Ser 388 062022
[13] Spruck K, Becker A, Borovik A, Gharaibeh M F, Rausch J, Schippers S, Müller A 2014 J Phys: Conf Ser 488 062026
[14] Borovik A, Ebinger B, Schury D, Schippers S, Müller A 2016 Phys. Rev. A 93 012708
[15] Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 015201
[16] Scott N S, Burke P G. 1980 J. Phys. B: At. Mol. Phys. 13 4299
[17] Ma Y, Liu L, Wu Y, Qu Y, Wang J 2020 Phys. Rev. A 101 052703
[18] Munoz Burgos J M, Loch S D, Ballance C P, Boivin R F 2009 A&A 500 1253
[19] Li F, Liang G Y, Bari M A, Zhao G 2013 A&A 556 A32
[20] Pindzol M S, Loch S D. 2019 Eur. Phys. J. D 73 78
[21] Hu S X. 2007 Phys. Rev. Lett 98 133201
[22] Pindzola M S, Abdel-Naby S A, Colgan J P 2019 J. Phys. B: At. Mol. Opt. Phys. 52 095201
[23] Colgan J, Pindzola M S, Childers G, Khakoo M A 2006 Phys. Rev. A 73 042710
[24] Loch S D, Ludlow J A, Pindzola M S, Whiteford A D, Griffin D C 2005 Phys .Rev. A 72 052716
[25] Borovik A, Gharaibeh M F, Hillenbrand P M, Schippers S, Müller A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175201
[26] Borovik A, Brandau C, Jacobi J, Schippers S, Müller A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 205205
[27] Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y, Qu Y 2018 Chin. Phys. B 27 053402
[28] Bao R, Wei J, Chen L, Li B, Chen X 2023 Chin. Phys. B 32 063401
[29] Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704
[30] Jonauskas V 2019 J. Quant. Spectrosc. Radiat. Transfer 239 106659
[31] Zhang F, Ding X, Gao C, Zhang D, Zeng J, Dong C 2024 Phys. Scr. 99 035409
[32] Pindzola M S, Griffin D C. 1997 Phys. Rev. A 56 1654-1657
[33] Pindzola M S, Loch S D. 2016 Phys. Rev. A 93 062709
[34] Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 175201
[35] Zhang S , Zhang F, Zhang D, Ding X, Jiang J, Xie L, Ma Y, Li M, Dong C 2024 Chin. Phys. B 33 033401
[36] Chen L, Li B, Chen X 2022 J. Quant. Spectrosc. Radiat. Transfer 285 108179
[37] Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019 Phys. Rev. A 100 062701
[38] Gu M F 2008 Can. J. Phys. 86 675-689
[39] Kwon D H, Savin D W 2012 Phys. Rev. A 86 022701
[40] Kynienė A, Kučas S, Pakalka S, Masys Š, Jonauskas V 2019 Phys. Rev. A 100 052705
[41] Chen M H, Reed K J, Moores D L 1990 Phys. Rev. Lett 64 1350
[42] Atomic Spectra Database. NIST, 2009
Metrics
- Abstract views: 33
- PDF Downloads: 1
- Cited By: 0









下载: