Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress in Nuclear Fusion Reactions

ZHANG Yuhai DONG Yifei ZHONG Jiayong ZHANG Fengshou

Citation:

Research Progress in Nuclear Fusion Reactions

ZHANG Yuhai, DONG Yifei, ZHONG Jiayong, ZHANG Fengshou
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Fusion reactions not only provide key information for studying the dynamic evolution and dissipation mechanisms in quantum many-body systems, but also open up an important avenue for exploring the reaction dynamics and structural characteristics of atomic nuclei. In recent years, with the continuous development of the technology for synthesizing new elements and their isotopes via fusion reactions, a series of new elements and their isotopes have been successfully synthesized. This paper systematically summarizes the synthesis pathways of elements in different mass regions, ranging from hydrogen to mendelevium, as well as the experimental progress of various heavy-ion fusion reactions from light systems to heavy systems. It reviews the advantages and limitations of current theoretical models in describing the capture process, and focuses on analyzing the strengths and shortcomings of phenomenological models and microscopic dynamic models in explaining the fusion behavior of different reaction systems. For the capture cross sections in light nuclei-light nuclei reaction systems, the EBD method, the CCFULL model, the universal Wong formula, and the ImQMD model all demonstrate good agreement with the experimental data. For the systems involving light nuclei-medium mass nuclei and light nuclei-heavy nuclei, the mentioned above models provide satisfactory descriptions. In particular, for the 16O+144Sm reaction system, the results obtained from the CCFULL model show good agreement with experimental data across both the sub-barrier and above-barrier energy regions. For the heavy nuclei-heavy nuclei systems, however, the EBD method holds a distinct advantage. Therefore, in subsequent predictions of the evaporation residue cross sections for superheavy elements, the results calculated by the EBD method can serve as the input for the capture cross section. On this basis, several key scientific issues in fusion reaction research are proposed, including heavy-ion fusion hindrance, the phenomenon of fusion suppression at extreme sub-barrier energies, fusion probability $P_{\text{CN}}$, and the fission barrier of compound nuclei, etc. Furthermore, an outlook and suggestions for future research directions in fusion reactions are provided.
  • 图 1  元素核合成的各种过程, 该图改自文献[14]

    Figure 1.  Various processes of nucleosynthesis, this figure adapted from the Ref.[14].

    图 2  实验上测得的合成Z = 102—113的熔合反应以及48Ca弹核引起的热熔合反应的总蒸发剩余截面[46]

    Figure 2.  Experimental total evaporation residues cross sections for the synthesis of elements Z = 102—113 via fusion reactions and 48Ca beam-induced hot fusion reactions[46]

    图 3  反应体系16O+144Sm中俘获截面的理论计算结果与实验数据的对比, 实验数据取自文献[38]

    Figure 3.  Comparison of theoretical calculations of the capture cross section in the reaction system 16O+144Sm with experimental data, and the experimental data are taken from the Ref. [38].

    图 4  (a) 基于FBD模型计算的48Ca+244Pu的俘获截面$ \sigma_{\text{cap}} $和熔合截面$ \sigma_{\text{fus}} $; (b) 基于FBD模型计算的48Ca+248Cm的俘获截面$ \sigma_{\text{cap}} $和熔合截面$ \sigma_{\text{fus}} $[83]

    Figure 4.  (a) The capture cross sections $ \sigma_{\text{cap}} $ and fusion cross sections $ \sigma_{\text{fus}} $ for the 48Ca+244Pu system calculated by the FBD model; (b) The capture cross sections $ \sigma_{\text{cap}} $ and fusion cross sections $ \sigma_{\text{fus}} $ for the 48Ca+248Cm system calculated by the FBD model[83].

    图 5  (a) 反应体系51V+245Cm的蒸发剩余截面; (b) 反应体系51V+248Cm的蒸发剩余截面[94]

    Figure 5.  (a) The predicted evaporation residue cross sections of the reaction 51V+245Cm; (b) The predicted evaporation residue cross sections of the reaction 51V+248Cm[94].

    图 6  (a) 反应体系48Ca+208Pb的俘获截面; (b) 反应体系48Ca+208Pb的熔合激发函数[106]

    Figure 6.  (a) The capture cross sections of the 48Ca+208Pb reaction; (b) The excitation functions of the $ xn $-evaporation channel ($ x=2-5 $) in the reaction 48Ca+208Pb[106].

    图 7  (a) 反应体系40Ca+48Ca的熔合激发函数; (b) 反应体系16O+208Pb的熔合激发函数[115]

    Figure 7.  (a) The fusion excitation functions for 40Ca+48Ca; (b) The excitation functions for 16O+208Pb[115].

    图 8  (a) 58Ni+58Ni反应不同弥散参数下的熔合激发函数; (b) 58Ni+58Ni反应不同弥散参数下的指数斜率[121]

    Figure 8.  (a) The fusion excitation functions for the $ ^{58}{\rm{Ni}}+^{58}{\rm{Ni}} $ reaction for different surface diffuseness parameters; (b) The logarithmic slopes for the $ {}^{58}{\rm{Ni}}+{}^{58}{\rm{Ni}} $ reaction for different surface diffuseness parameters[121].

    表 1  在轻核-轻核反应体系中, 实验观测到的熔合截面与该入射能量下理论模型的比较

    Table 1.  Comparison between experimental cross sections and theoretical models for light nuclei-light nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{fus}}^{\text{exp}} $(mb) $ \sigma_{\text{fus}}^{\text{ECC}} $(mb) $ \sigma_{\text{fus}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{fus}}^{\text{CCFULL}} $[65](mb) $ \sigma_{\text{fus}}^{\text{Wong}} $(mb) $ \sigma_{\text{fus}}^{\text{ImQMD}} $(mb)
    12C+14C→26Mg 8.000 393.355[30] 936.203 513.288 606.788 505.773 477.836
    14N+16O→30P 11.988 429.722[27] 777.552 445.524 448.672 476.894
    16O+16O→32S 12.514 433.638[29] 659.073 337.543 413.014 334.054 342.434
    12C+20Ne→32S 14.965 467.280[28] 873.843 639.505 762.936 696.192 698.062
    DownLoad: CSV

    表 2  在轻核-中重核、轻核-重核反应体系中, 实验观测到的俘获截面与该入射能量下理论模型的比较

    Table 2.  Comparison between experimental cross sections and theoretical models for light nuclei-medium mass nuclei and light nuclei-heavy nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{cap}}^{\text{exp}} $[71](mb) $ \sigma_{\text{cap}}^{\text{ECC}} $(mb) $ \sigma_{\text{cap}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{cap}}^{\text{CCFULL}} $[65](mb) $ \sigma_{\text{cap}}^{\text{Wong}} $(mb) $ \sigma_{\text{cap}}^{\text{ImQMD}} $(mb)
    12C+206Pb→218Ra 80.150 872.246 1113.600 986.338 852.125 1113.373 1322.925
    14N+232Th→246Bk 86.390 823.000 656.404 676.666 745.517 912.004
    15N+209Bi→224Th 82.297 705.589 785.167 704.484 769.015 965.097
    16O+209Bi→225Pa 93.185 688.362 732.198 659.206 743.462 917.345
    16O+144Sm→160Yb 80.89 876.000 870.274 776.450 879.439 857.778 1013.1636
    16O+208Pb→226Th 100.72 949.000 974.760 888.832 1173.059 1022.355 1222.394
    23Na+48Ti→71As 45.207 687.284 645.242 583.905 682.850 757.438
    28Si+208Pb→236Cm 156.821 726.666 371.941 656.247 471.170 766.809 1032.956
    30Si+238U→268Sg 169.001 780.325 638.769 673.966 447.388 751.604 976.721
    34S+89Y→123Cs 91.050 505.000 465.149 434.505 464.238 544.124
    37Cl+100Mo→137Pr 94.539 250.231 217.034 274.459 280.626 346.832
    DownLoad: CSV

    表 3  在重核-重核反应体系中, 实验观测到的俘获截面与该入射能量下理论模型的比较

    Table 3.  Comparison between experimental cross sections and theoretical models for heavy nuclei-heavy nuclei fusion reaction systems at the incident energy.

    反应体系 $ E_{\text{c.m.}} $(MeV) $ \sigma_{\text{cap}}^{\text{exp}} $[72](mb) $ \sigma_{\text{cap}}^{\text{ECC}} $(mb) $ \sigma_{\text{cap}}^{\text{EBD2}} $[62](mb) $ \sigma_{\text{cap}}^{\text{Wong}} $(mb) $ \sigma_{\text{cap}}^{\text{ImQMD}} $(mb)
    48Ca+238U→286Cn 214.7 502 ± 100 375.835 359.819 367.476 562.973
    48Ca+244Pu→292Fl 204 126 ± 63 133.976 153.076 160.059 195.093
    48Ca+248Cm→296Lv 206 69 ± 35 108.700 120.816 132.157 176.872
    48Ti+238U→286Fl 226 250 ± 40 191.874 153.741 197.252 256.668
    52Cr+232Th→284Fl 261 410 ± 100 364.361 255.807 344.598 603.500
    52Cr+248Cm→300120 251 88 ± 10 145.230 77.347 117.075 146.084
    54Cr+248Cm→302120 242 15 ± 3 58.305 36.777 60.473 70.529
    64Ni+238U→302120 301 123 ± 37 42.351 139.730 137.971 452.075
    DownLoad: CSV
  • [1]

    马余刚, 2020 原子核物理新进展(上海交通大学出版社)第245—304页

    Ma Y G 2020 Recent Progress in Nuclear Physics (Shanghai: Shanghai Jiao Tong University Press), pp 245–304.

    [2]

    张丰收, 葛凌霄 1998 原子核多重碎裂(科学出版社) 第268—274页

    Zhang F S, Ge L X 1998 Nuclear Multifragmentation (Beijing: Science Press), pp 268–274.

    [3]

    张丰收, 张钰海, 张明昊, 唐娜, 程诗慧, 李静静, 程伟 2022 北京师范大学学报(自然科学版) 58 392

    Zhang F S, Zhang Y H, Zhang M H, Tang N, Cheng S H, Li J J, Cheng W 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 392

    [4]

    Thoennessen M 2016 The discovery of isotopes (Springer International Publishing Switzerland), pp 23–35

    [5]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [6]

    Bohr N 1936 Usp. Fiz. Nauk 16 425Google Scholar

    [7]

    Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472Google Scholar

    [8]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366Google Scholar

    [9]

    Stokstad R G, Eisen Y, Kaplanis S, Pelte D, Smilansky U, Tserruya I 1980 Phys. Rev. C 21 2427Google Scholar

    [10]

    唐晓东, 李阔昂 2019 物理 48 633

    Tang X D, Li K A 2019 Phys. 48 633

    [11]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [12]

    Cameron A G W 2013 Stellar evolution, nuclear astrophysics, and nucleogenesis (Dover Publications), pp 5–10

    [13]

    Fowler W A 1984 Rev. Mod. Phys. 56 149Google Scholar

    [14]

    柳卫平, 张玉虎, 郭冰, 白希祥, 何建军, 唐晓东 2017 核物理与等离子体物理: 学科前沿及发展战略(上册: 核物理卷)第四章核天体物理 第207—223页

    Liu W P, Zhang Y H, Guo B, Bai X X, He J J, Tang X D 2017 Nuclear Physics and Plasma Physics: Discipline Development Strategy(Nuclear Physics Volume) (Beijing: Science Press), pp 207–223.

    [15]

    Matis H 2019 Nuclear Science—A Guide to the Nuclear Science Wall Chart (Contemporary Physics Education Project), pp 10–1–10–5

    [16]

    José J, Iliadis C 2011 Rep. Prog. Phys. 74 096901Google Scholar

    [17]

    Arnould M, Goriely S 2003 Phys. Rep. 384 1Google Scholar

    [18]

    刘佳佳, 张钰海, 张丰收 2025 原子能科学技术 59 265

    Liu J J, Zhang Y H, Zhang F S 2025 At. Energy Sci. Technol. 59 265

    [19]

    McMillan E, Abelson P H 1940 Phys. Rev. 57 1185

    [20]

    Seaborg G T, Mcmillan E M, Kennedy J W, Wahl A C 1946 Phys. Rev. 69 366

    [21]

    Seaborg G T 1994 The chemical and radioactive properties of the heavy elements (World Scientific), pp 20–23

    [22]

    Ghiorso A, James R A, Morgan L O, Seaborg G T 1950 Phys. Rev. 78 472

    [23]

    Thompson S G, Ghiorso A, Seaborg G T 1950 Phys. Rev. 77 838

    [24]

    Thompson S G, Street K, Ghiorso A, Seaborg G T 1950 Phys. Rev. 78 298

    [25]

    Ghiorso A, Thompson S G, Higgins G H, Seaborg G T, Studier M H, Fields P R, Fried S M, Diamond H, Mech J F, Pyle G L, Huizenga J R, Hirsch A, Manning W M, Browne C I, Smith H L, Spence R W 1955 Phys. Rev. 99 1048Google Scholar

    [26]

    Ghiorso A, Harvey B G, Choppin G R, Thompson S G, Seaborg G T 1955 Phys. Rev. 98 1518Google Scholar

    [27]

    Stokstad R G, Switkowski Z E, Dayras R A, Wieland R M 1976 Phys. Rev. Lett. 37 888Google Scholar

    [28]

    Hulke G, Rolfs C, Trautvetter H P 1980 Z. Phys. A: At. Nucl. 297 161Google Scholar

    [29]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980

    [30]

    Dasmahapatra B, Čujec B 1993 Nucl. Phys. A 565 657Google Scholar

    [31]

    An R, Jiang X, Tang N, Cao L G, Zhang F S 2024 Phys. Rev. C 109 064302

    [32]

    林承键, 2018 重离子核反应 (哈尔滨工程大学出版社) 第134—168页

    Lin C J 2018 Nuclear Reactions with Heavy Ions (Harbin: Harbin Engineering University Publishing), pp 134–168.

    [33]

    Murakami T, Sahm C C, Vandenbosch R, Leach D D, Ray A, Murphy M J 1986 Phys. Rev. C 34 1353Google Scholar

    [34]

    Broglia R, Dasso C, Landowne S, Pollarolo G 1983 Phys. Lett. B 133 34Google Scholar

    [35]

    Timmers H, Leigh J, Dasgupta M, Hinde D, Lemmon R, Mein J, Morton C, Newton J, Rowley N 1995 Nucl. Phys. A 584 190Google Scholar

    [36]

    Morton C R, Berriman A C, Dasgupta M, Hinde D J, Newton J O, Hagino K, Thompson I J 1999 Phys. Rev. C 60 044608Google Scholar

    [37]

    Wei J X, Leigh J R, Hinde D J, Newton J O, Lemmon R C, Elfstrom S, Chen J X, Rowley N 1991 Phys. Rev. Lett. 67 3368Google Scholar

    [38]

    Leigh J R, Dasgupta M, Hinde D J, Mein J C, Morton C R, Lemmon R C, Lestone J P, Newton J O, Timmers H, Wei J X, Rowley N 1995 Phys. Rev. C 52 3151

    [39]

    Donets E D, Shchegolev V A, Ermakov V A 1966 Sov. At. Energy 20 257Google Scholar

    [40]

    Zager B A, Miller M B, Mikheev V L, Polikanov S M, Sukhov A M, Flerov G N, Chelnokov L P 1966 Sov. At. Energy 20 264Google Scholar

    [41]

    Donets E D, Shchegolev V A, Ermakov V A 1965 Sov. At. Energy 19 995Google Scholar

    [42]

    Eskola K, Eskola P, Nurmia M, Ghiorso A 1971 Phys. Rev. C 4 632Google Scholar

    [43]

    Ghiorso A, Nurmia M, Harris J, Eskola K, Eskola P 1969 Phys. Rev. Lett. 22 1317Google Scholar

    [44]

    Ghiorso A, Nurmia M, Eskola K, Harris J, Eskola P 1970 Phys. Rev. Lett. 24 1498Google Scholar

    [45]

    Ghiorso A, Nitschke J M, Alonso J R, Alonso C T, Nurmia M, Seaborg G T, Hulet E K, Lougheed R W 1974 Phys. Rev. Lett. 33 1490Google Scholar

    [46]

    Oganessian Y 2013 Nucl. Phys. News 23 15Google Scholar

    [47]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, et al 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [48]

    Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161Google Scholar

    [49]

    Zhang F S, Li C, Zhu L, Wen P W 2018 Front. Phys. 13 132113Google Scholar

    [50]

    张钰海, 张根, 李静静, 程伟, 张丰收 2022 同位素 35 104

    Zhang Y H, Zhang G, Li J J, Cheng W, Zhang F S 2022 J. Isot. 35 104

    [51]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [52]

    Hofmann S, Heinz S, Mann R, Maurer J, Münzenberg G, Antalic S, Barth W, Burkhard H, Dahl L, Eberhardt K, et al 2016 Eur. Phys. J. A 52 180Google Scholar

    [53]

    Khuyagbaatar J, Yakushev A, Düllmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A K, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J B, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2020 Phys. Rev. C 102 064602Google Scholar

    [54]

    Tanaka M, Brionnet P, Du M, Ezold J, Felker K, Gall B J, Go S, Grzywacz R K, Haba H, Hagino K, Hogle S, Ishizawa S, Kaji D, Kimura S, King T, Komori Y, K Lemon R, G Leonard M, Morimoto K, Morita K, Nagae D, Naito N, Niwase T, C Rasco B, B Roberto J, P Rykaczewsk K, Sakaguchi S, Sakai H, Shigekawa Y, W Stracener D, VanCleve, Shelley, Wang Y, Washiyama K, Yokokita T 2022 J. Phys. Soc. Jpn. 91 084201Google Scholar

    [55]

    Oganessian Y T, Utyonkov V K, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Karpov A V, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Saiko V V, Schlattauer L, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Sabelnikov A V, Abdusamadzoda D, Bodrov A Y, Voronyuk M G, Bozhikov G A, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B, Wang J G, Zhang M M, Huang X Y 2025 Phys. Rev. C 112 014603Google Scholar

    [56]

    Zagrebaev V 2019 Heavy Ion Reactions at Low Energies (Springer Nature), pp 105–145

    [57]

    Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102Google Scholar

    [58]

    Zagrebaev V I, Aritomo Y, Itkis M G, Oganessian Y T, Ohta M 2001 Phys. Rev. C 65 014607Google Scholar

    [59]

    Siwek-Wilczyńska K, Wilczyński J 2004 Phys. Rev. C 69 024611Google Scholar

    [60]

    Cap T, Siwek-Wilczyńska K, Wilczyński J 2011 Phys. Rev. C 83 054602Google Scholar

    [61]

    Lü H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381Google Scholar

    [62]

    http://www.imqmd.com/fusion/EBD2 a.html

    [63]

    Chuluunbaatar O, Gusev A, Vinitsky S, Abrashkevich A, Wen P, Lin C 2022 Comput. Phys. Commun. 278 108397Google Scholar

    [64]

    Hagino K, Rowley N, Kruppa A 1999 Comput. Phys. Commun. 123 143Google Scholar

    [65]

    https://www2.yukawa.kyoto-u.ac.jp/kouichi.hagino/ccfull.html

    [66]

    Stefanini A M, Corradi L, Vinodkumar A M, Feng Y, Scarlassara F, Montagnoli G, Beghini S, Bisogno M 2000 Phys. Rev. C 62 014601Google Scholar

    [67]

    Baby L T, Tripathi V, Das J J, Sugathan P, Madhavan N, Sinha A K, Radhakrishna M C, Madhusudhana Rao P V, Hui S K, Hagino K 2000 Phys. Rev. C 62 014603Google Scholar

    [68]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [69]

    Liu M, Wang N, Li Z X, Wu X Z, Zhao E G 2006 Nucl. Phys. A 768 80Google Scholar

    [70]

    Wang N, Chen J, Wang Y, Yao H 2025 Phys. Rev. C 111 024621Google Scholar

    [71]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281Google Scholar

    [72]

    Itkis M G, Knyazheva G N, Itkis I M, Kozulin E M 2022 Eur. Phys. J. A 58 178Google Scholar

    [73]

    Swiatecki W 1981 Phys. Scr. 24 113Google Scholar

    [74]

    Bjørnholm S, Swiatecki W J 1982 Nucl. Phys. A 391 471Google Scholar

    [75]

    Blocki J, Feldmeier H, Swiatecki W 1986 Nucl. Phys. A 459 145Google Scholar

    [76]

    Aritomo Y, Wada T, Ohta M, Abe Y 1999 Phys. Rev. C 59 796Google Scholar

    [77]

    Zagrebaev V I 2001 Phys. Rev. C 64 034606Google Scholar

    [78]

    Shen C, Kosenko G, Abe Y 2002 Phys. Rev. C 66 061602

    [79]

    Shen C, Abe Y, Boilley D, Kosenko G, Zhao E 2008 Int. J. Mod. Phys. E 17 66Google Scholar

    [80]

    Shen C, Abe Y, Li Q, Boilley D 2009 Sci. China Ser. G 52 1458Google Scholar

    [81]

    Swiatecki W J, Siwek-Wilczynska K, Wilczynski J 2005 Phys. Rev. C 71 014602Google Scholar

    [82]

    Siwek-Wilczynska K, Cap T, Kowal M, Sobiczewski A, Wilczynski J 2012 Phys. Rev. C 86 014611Google Scholar

    [83]

    Cap T, Kowal M, Siwek-Wilczyńska K 2022 Eur. Phys. J. A 58 231Google Scholar

    [84]

    Adamian G, Antonenko N, Jolos R, Palchikov Y V, Scheid W, Shneidman T 2004 Phys. At. Nucl. 67 1701Google Scholar

    [85]

    左维, 李君清, 赵恩广 2006 原子核物理评论 23 382

    Zuo W, Li J Q, Zhao E G 2006 Nucl. Phys. Rev. 23 382

    [86]

    Feng Z Q, Jin G M, Li J Q, Scheid W 2007 Phys. Rev. C 76 044606Google Scholar

    [87]

    Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607Google Scholar

    [88]

    Yu L, Gan Z G, Huang M H, Zhang H F, Li J Q 2013 Nucl. Phys. Rev. 30 299

    [89]

    Yu L, Gan Z G, Zhang Z Y, Zhang H F, Li J Q 2014 Phys. Lett. B 730 105Google Scholar

    [90]

    Zhu L, Su J, Li C, Zhang F S 2022 Phys. Lett. B 829 137113Google Scholar

    [91]

    Zhu L, Su J 2021 Phys. Rev. C 104 044606Google Scholar

    [92]

    Zhang M H, Wang M C, Zou Y, Li J J, Zhang G, Zhang F S 2025 Phys. Rev. C 111 024611Google Scholar

    [93]

    Li J J, Li C, Zhang G, Zhu L, Liu Z, Zhang F S 2017 Phys. Rev. C 95 054612Google Scholar

    [94]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [95]

    杨秀秀, 张根, 李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh, 程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151

    Yang X X, Zhang G, Li J J, Li B, Zhang X R, Cheikh A T S, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151

    [96]

    Zhang M H, Zou Y, Wang M C, Niu Q L, Zhang G, Zhang F S 2025 Chin. Phys. C 49 054107Google Scholar

    [97]

    Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204Google Scholar

    [98]

    张明昊, 张钰海, 李静静, 唐娜, 孙帅, 张丰收 2023 核技术 46 080014

    Zhang M H, Zhang Y H, Li J J, Tang N, Sun S, Zhang F S 2023 Nucl. Tech. 46 080014

    [99]

    Zhang M H, Zhang Y H, Zou Y, Yang X X, Zhang G, Zhang F S 2024 Nucl. Sci. Tech. 35 95Google Scholar

    [100]

    Li J J, Tang N, Zhang Y H, Zhang M H, Wang C, Zhang X R, Zhu L, Zhang F S 2023 Int. J. Mod. Phys. E 32 2330002

    [101]

    Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069Google Scholar

    [102]

    Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601Google Scholar

    [103]

    邹盈, 张钰海, 唐娜, 李静静, 张丰收 2023 原子能科学技术 57 762

    Zou Y, Zhang Y H, Tang N, Li J J, Zhang F S 2023 At. Energy Sci. Technol. 57 762

    [104]

    Chen L W, Ge L X, Zhang X D, Zhang F S 1997 J. Phys. G: Nucl. Part. Phys. 23 211Google Scholar

    [105]

    Chen L W, Zhang F S, Jin G M 1998 Phys. Rev. C 58 2283Google Scholar

    [106]

    Zhang Y H, Zhang G, Li J J, Liu Z, Yeremin A V, Zhang F S 2022 Phys. Rev. C 106 014625Google Scholar

    [107]

    Dirac P A M 1930 Note on exchange phenomena in the Thomas atom (Cambridge University Press), pp 376–385

    [108]

    Sekizawa K 2019 Front. Phys. 7 20Google Scholar

    [109]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Lett. B 801 135194Google Scholar

    [110]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Rev. C 102 044603Google Scholar

    [111]

    Bonche P, Grammaticos B, Koonin S 1978 Phys. Rev. C 17 1700

    [112]

    Umar A S, Strayer M R, Reinhard P G 1986 Phys. Rev. Lett. 56 2793Google Scholar

    [113]

    Godbey K, Umar A S, Simenel C 2022 Phys. Rev. C 106 L051602Google Scholar

    [114]

    Sun X X, Guo L 2023 Phys. Rev. C 107 064609Google Scholar

    [115]

    Yao H, Yang H, Wang N 2024 Phys. Rev. C 110 014602Google Scholar

    [116]

    Jiang X, Wang N, An R 2025 Phys. Rev. C 111 044604Google Scholar

    [117]

    Sahm C C, Clerc H G, Schmidt K H, Reisdorf W, Armbruster P, Heßberger F, Keller J, Münzenberg G, Vermeulen D 1984 Z. Phys. A: At. Nucl. 319 113Google Scholar

    [118]

    Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949Google Scholar

    [119]

    Boilley D, Lü H, Shen C, Abe Y, Giraud B G 2011 Phys. Rev. C 84 054608Google Scholar

    [120]

    Jiang C L, Esbensen H, Rehm K E, Back B B, Janssens R V F, Caggiano J A, Collon P, Greene J, Heinz A M, Henderson D J, Nishinaka I, Pennington T O, Seweryniak D 2002 Phys. Rev. Lett. 89 052701Google Scholar

    [121]

    Hagino K, Rowley N, Dasgupta M 2003 Phys. Rev. C 67 054603Google Scholar

    [122]

    Adamian G, Antonenko N, Scheid W 2000 Nucl. Phys. A 678 24Google Scholar

    [123]

    Smolańczuk R 2010 Phys. Rev. C 81 067602Google Scholar

    [124]

    Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601

    [125]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Chernysheva E V, Krupa L, Hanappe F, Dorvaux O, Stuttgé L, Trzaska W H, Schmitt C, Chubarian G 2014 Phys. Rev. C 90 054608Google Scholar

    [126]

    Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615Google Scholar

    [127]

    Manjunatha H, Sowmya N, Munirathnam R, Sridhar K, Seenappa L, Damodara Gupta P 2023 Nucl. Phys. A 1032 122621Google Scholar

    [128]

    Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608Google Scholar

    [129]

    卢希庭, 江栋兴, 叶沿林, 2000 原子核物理 (原子能出版社) 第312—349页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press), pp 312–349.

    [130]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [131]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501Google Scholar

    [132]

    Qiao C Y, Pei J C 2022 Phys. Rev. C 106 014608Google Scholar

    [133]

    Yao H, Li C, Zhou H, Wang N 2024 Phys. Rev. C 109 034608Google Scholar

    [134]

    Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 At. Data Nucl. Data Tables 154 101587Google Scholar

  • [1] HAN Xu, YE Tao, CHEN ZhenPeng, YING YangJun, GUO HaiRui, ZU TieJun. Evaluation of T+t Reaction Cross Sections Based on R-matrix Theory. Acta Physica Sinica, doi: 10.7498/aps.75.20251280
    [2] HUANG Zhilong, LI Zhilong, Gao Zepeng, WANG Yongjia, LI Qingfeng. Machine-learning predictions of fusion cross sections for synthesizing 99–103Mo. Acta Physica Sinica, doi: 10.7498/aps.75.20251527
    [3] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, doi: 10.7498/aps.70.20210742
    [4] Yang Huan, Xing Ling-Ling, Zhang Sui-Meng, Wu Xing-Ju, Yuan Hao. Influence of screening effect on double differential cross section and single differential cross section for (e, 2e) process of helium. Acta Physica Sinica, doi: 10.7498/aps.62.183402
    [5] Qu Wei-Wei, Zhang Gao-Long, Le Xiao-Yun. Systematic analysis of the fusion barrier heights and positions for projectile using the double folding model. Acta Physica Sinica, doi: 10.7498/aps.61.152501
    [6] Chen Xue-Wen, Fang Zhen-Yun, Zhang Jia-Wei, Zhong Tao, Tu Wei-Xing. Renormalization of two neutral mixing-loop chain propagators in standard model and its e+e-→μ+μ- cross section. Acta Physica Sinica, doi: 10.7498/aps.60.021101
    [7] Pan Yu, Wang Kai-Jun, Fang Zhen-Yun, Wang Xian-You, Peng Qing-Jun. Accurately calculate cross section of the n+n→2π0 reaction in the n-n renormalization chain diagram. Acta Physica Sinica, doi: 10.7498/aps.57.4817
    [8] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [9] Liu Jian-Ye, Zuo Wei, Lee Xi-Guo, Xing Yong-Zhong. Isospin effect in the nuclear reaction induced by neutron-halo nuclei. Acta Physica Sinica, doi: 10.7498/aps.56.1339
    [10] Jia Fei, Xu Hu-Shan, Huang Tian-Heng, Yuan Xiao-Hua, Zhang Hong-Bin, Li Jun-Qing, W.Scheid. Study of mass distributions of quasifission products based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.1347
    [11] Jia Fei, Xu Hu-Shan, Zheng Chuan, Fan Rui-Rui, Zhang Xue-Ying, Li Jun-Qing, Scheid W.. Study of the mechanism for synthesizing superheavy nuclei based on dinuclear system. Acta Physica Sinica, doi: 10.7498/aps.56.2047
    [12] Li JiaXing, Guo ZhongYan, Xiao GuoQing, Zhan WenLong, Wang JianSong, Sun ZhiYu, Wang Meng, Tian WenDong, Wang WuSheng, Mao RuiShi, Wang QuanJin, Ning ZhenJiang, Wang JianFeng. Fitting the data of nonexotic structural nuclear total reaction cross section with a corrected Glauber model. Acta Physica Sinica, doi: 10.7498/aps.52.58
    [13] Yang Shao-Peng, Fu Guang-Sheng, Li Xiao-Wei, Geng Ai-Cong, Han Li. The kinetics simulation of trap depths and capture cross sections of SETs in AgC l microcrystals doped with [Fe(CN)6]4- complex. Acta Physica Sinica, doi: 10.7498/aps.52.2649
    [14] Sun Gui-Hua, Yang Xiang-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.506
    [15] NING ZHEN-JIANG, LI JIA-XING, GUO ZHONG-YAN, ZHAN WEN-LONG, WANG JIAN-SONG, XIAO GUO-QING, WANG QUAN-JIN, WANG JIN-CHUAN, WANG MENG, WANG JIAN-FENG, CHEN ZHI-QIANG. MEASUREMENT OF TOTAL REACTION CROSS SECTIONFOR EXOTIC LIGHT PROTON-RICH NUCLEUS 12N. Acta Physica Sinica, doi: 10.7498/aps.50.644
    [16] FU CHUN-YIN, LU YONG-LING, ZENG SHU-RONG. KINETICS OF THE CAPTURING FROM THE FREE MAJORITY CARRIER TAIL REGION AND MEASUREMENT OF THE MAJORITY CARRIER CAPTURE CROSS SECTION. Acta Physica Sinica, doi: 10.7498/aps.37.485
    [17] HAБлЮдEHиE ядEP 30л0TA C AHOMAлbHbIM CEчEHиEM лPи OБлYчHии U238 иOHAMи Ne22. Acta Physica Sinica, doi: 10.7498/aps.22.708
    [18] СЕЧЕНИЕ ЗАХВАТА АНТИНЕЙТРИНО ВЫСОКИХ ЭНЕРГИЙ НА ЯДРЕ O16. Acta Physica Sinica, doi: 10.7498/aps.20.512
    [19] О ЭФФЕКТЕ СОСТАВНЫХ ЯДЕР В ЯДЕРНЫХ РЕАКЦИЯХ ПРИ НИЗКИХ ЭНЕРГИИ. Acta Physica Sinica, doi: 10.7498/aps.18.227
    [20] C. T. YOUNG. NUCLEAR REACTIONS AND NUCLEAR STRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.18.275
Metrics
  • Abstract views:  340
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Available Online:  24 November 2025
  • /

    返回文章
    返回