-
Based on the Gradient Boosting Decision Tree (GBDT) machine learning algorithm, this study develops a model for predicting the fusion reaction cross-section (CS) of 99-103Mo*, aiming to explore the optimal synthesis pathway for the medical isotope 99Mo. The model inputs include characteristic quantities such as reaction energy, proton number, mass number, and binding energy, as well as relevant parameters calculated based on phenomenological theoretical models, with the output being the fusion reaction cross-section. It is found that the mean absolute error (MAE) between the machine learning-predicted CS and experimental values on the test set is 0.0615, which is superior to the 0.1103 predicted by the EBD2 model. On this basis, combined with the GEMINI++ program, the survival probabilities of the neutron decay channels for 99-103Mo* were calculated to derive the evaporation residue cross-section of 99Mo. It is found that the evaporation residue cross-section of the 2n de-excitation channel for 4He+97Zr at a center-of-mass energy of 18.51 MeV is 1199.80 mb, making it the optimal pathway for synthesizing 99Mo. This research validates the reliability of physics-informed machine learning methods in predicting fusion reaction cross-sections and provides a reference for optimizing reaction system selection and producing medical isotopes through fusion reactions in heavy-ion accelerators.
-
Keywords:
- Medical Isotope Production /
- Heavy-Ion Fusion Reactions /
- Capture Cross Sections /
- Machine Learning
-
[1] Salih S, Alkatheeri A, Alomaim W, Elliyanti A 2022 Molecules 27 5231
[2] Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O 2020 Expert Review of Medical Devices 17 331
[3] Gallamini A, Zwartboed C, Borra A 2014 Cancers 6 1821
[4] Hsu B, Chen F C, Wu T C, Huang W S, Hou P N, Chen C C, Hung G U 2014 European Journal of Nuclear Medicine and Molecular Imaging 41 2294
[5] Hasan S, Prelas M A 2020 SN Applied Sciences 2 1782
[6] Stoddard M N, Harb J N, Memmott M J 2019 Annals of Nuclear Energy 129 56
[7] Wang Y, Chen D, dos Santos Augusto R, Liang J, Qin Z, Liu J, Liu Z 2022 Molecules 27 5294
[8] Dash A, Knapp Jr F R, Pillai M 2013 Nuclear Medicine and Biology 40 167
[9] Liem P H, Tran H N, Sembiring T M 2015 Progress in Nuclear Energy 82 191
[10] Le V S 2014 Science and Technology of Nuclear Installations 2014 345252
[11] Lee S K, Beyer G J, Lee J S 2016 Nuclear Engineering and Technology 48 613
[12] Xu W, Li J, Shi L 2024 Nuclear Engineering and Technology 56 3585
[13] Youker A J, Chemerisov S D, Tkac P, Kalensky M, Heltemes T A, Rotsch D A, Vandegrift G F, Krebs J F, Makarashvili V, Stepinski D C 2017 Journal of Nuclear Medicine 58 514
[14] Bénard F, Buckley K R, Ruth T J, Zeisler S K, Klug J, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah J P, John M S K Valliant, Schaffer P 2014 Journal of Nuclear Medicine 55 1017
[15] Wang H Y, Qiu Y J, Lin C J, Wu X G, Han Y L, Wu H Y, Feng J, Zheng Y, Yang L, Li C B, Luo T P, Chang C, Sun Q, Zhu D Y, Zhao Y X, Huang D H, Li T X, Zheng M, Zhao Z H, Zhu Y W, Zhao K L, Sun P F, Song J X, Guo M W, Ren S X, Zheng X H 2025 Acta Phys. Sin. 74 132501. (in Chinese) [王涵语, 邱奕嘉, 林承键, 吴晓光, 韩银录, 吴鸿毅, 冯晶, 郑云, 杨磊, 李聪博, 骆天鹏, 常昶, 孙琪, 朱德宇, 赵亦轩, 黄大湖, 李天晓, 郑敏, 赵子豪, 朱意威, 赵坤灵, 孙鹏飞, 宋金兴, 郭明伟, 任四禧, 郑小海 2025 物理学报 74 132501]
[16] Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instrum. Meth. A 488 11
[17] Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Liu J W, Jia X J, Zhou X P, Liu S H, Yin D Y, Chai W P, Wu J X, Song M T, Shen G D, Ma X M, Mao L J, Zhao H, Li Y M, Huang M W, Yin D X, Li J, Wang J C, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263
[18] Zhou X, Yang J 2022 AAPPS Bull. 32 35
[19] Hong B 2023 AAPPS Bulletin 33 3
[20] Hagino K, Rowley N, Kruppa A T 1999 Comput. Phys. Commun. 123 143
[21] Wen P W, Chuluunbaatar O, Gusev A A, Nazmitdinov R G, Nasirov A K, Vinitsky S I, Lin C J, Jia H M 2020 Phys. Rev. C 101 014618
[22] Simenel C, Umar A S 2018 Prog. Part. Nucl. Phys. 103 19
[23] Simenel C 2012 Eur. Phys. J. A 48 152
[24] Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 Atom. Data Nucl. Data Tabl. 114 281
[25] WANG B, WEN K, ZHAO W, ZHAO E, ZHOU S 2017 Chin. Sci. Bull. 62 2480
[26] Wong C Y 1973 Phys. Rev. Lett. 31 766
[27] Lwin N W, Htike N N, Hagino K 2017 Phys. Rev. C 95 064601
[28] Vijay, Chahal R P, Gautam M S, Duhan S, Khatri H 2021 Phys. Rev. C 103 024607
[29] Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102
[30] Zhu L, Feng Z Q, Li C, Zhang F S 2014 Phys. Rev. C 90 014612
[31] Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 Atom. Data Nucl. Data Tabl. 154 101587
[32] Gao Z, Liu S, Wen P, Liao Z, Yang Y, Su J, Wang Y, Zhu L 2024 Phys. Rev. C 109 024601
[33] Dell’Aquila D, Gnoffo B, Lombardo I, Porto F, Russo M 2023 J. Phys. G 50 015101
[34] Cheng K X, He R X, Qiao C Y, Ma C W 2025 Nuclear Science and Techniques 36 194
[35] Li Z, Wang Y, Li Q 2025 NUCLEAR TECHNIQUES 48 050012. (in Chinese) [李志龙,王永佳,李庆峰 2025 核技术 48 250132]
[36] Li Z, Gao Z, Liu L, Wang Y, Zhu L, Li Q 2024 Physical Review C 109 024604
[37] Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Reviews of Modern Physics 86 317
[38] Wang N, Chen J, Wang Y, Yao H 2025 Physical Review C 111 024621
[39] Cap T, Siwek-Wilczynska K, Wilczynski J 2011 Phys. Rev. C 83 054602
[40] Siwek-Wilczynska K, Wilczynski J 2004 Phys. Rev. C 69 024611
[41] Lü H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381
[42] Wang N 2025 Chinese Physics C 49 124106
[43] Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nuclear Science and Techniques 32 109
[44] Gao Z, Li Q 2023 NUCLEAR TECHNIQUES 46 080009. (in Chinese) [高泽鹏,李庆峰 2023 核技术 46 080009]
[45] Li Z, Wang Y, Li Q, Lv B f 2025 Physical Review C 112 014312
[46] Dong X X, An R, Lu J X, Geng L S 2023 Phys. Lett. B 838 137726
[47] Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323
[48] Dong X X, An R, Lu J X, Geng L S 2022 Phys. Rev. C 105 014308
[49] Su P, He W B, Fang D Q 2023 Symmetry 15 1040
[50] Lv B, Wang Y, Li Z, Petrache C 2025 Physical Review C 111 064324
[51] Lv B, Li Z, Wang Y, Petrache C 2024 Physics Letters B 857 139013
[52] Li Z L, Lv B F, Wang Y J, Petrache C M 2026 Chinese Physics C 50 014107
[53] Newton J O, Morton C R, Dasgupta M, Leigh J R, Mein J C, Hinde D J, Timmers H, Hagino K 2001 Phys. Rev. C 64 064608
[54] Aguilera E F, Vega J J, Kolata J J, Morsad A, Tighe R G, Kong X J 1990 Phys. Rev. C 41 910
[55] Aguilera E F, Kolata J J, Tighe R J 1995 Phys. Rev. C 52 3103
[56] Szanto E M, Neto R L, Figueira M C S, Szanto de Toledo A, Herman M G, Nicolis N G, Stwertka P M, Cormier T M 1990 Phys. Rev. C 41 2164
[57] Sonzogni A A, Bierman J D, Kelly M P, Lestone J P, Liang J F, Vandenbosch R 1998 Phys. Rev. C 57 722
[58] Jiang C L, Back B B, Rehm K E, Hagino K, Montagnoli G, Stefanini A M 2021 The European Physical Journal A 57 235
[59] Luong D H, Dasgupta M, Hinde D J, du Rietz R, Rafiei R, Lin C J, Evers M, Diaz-Torres A 2013 Phys. Rev. C 88 034609
[60] Jiang C L, Back B B, Rehm K E, Hagino K, Montagnoli G, Stefanini A M 2021 Eur. Phys. J. A 57 235
[61] Werke T A, Mayorov D A, Alfonso M C, Tereshatov E E, Folden C M 2015 Phys. Rev. C 92 054617
[62] Maiti M 2011 Phys. Rev. C 84 044615
[63] Palshetkar C S, Santra S, Chatterjee A, Ramachandran K, Thakur S, Pandit S K, Mahata K, Shrivastava A, Parkar V V, Nanal V 2010 Phys. Rev. C 82 044608
[64] Parkar V V, Palit R, Sharma S K, Naidu B S, Santra S, Joshi P K, Rath P K, Mahata K, Ramachandran K, Trivedi T, Raghav A 2010 Physical Review C 82 054601
[65] Charity R J 2010 Phys. Rev. C 82 014610
[66] Zagrebaev V I, Karpov A V, Denikin A S, Samarin V V 2025. http://nrv.jinr.ru/nrv/
[67] Canto L, Gomes P, Donangelo R, Hussein M S 2006 Physics reports 424 1
[68] Thampi A 2022 Interpretable AI: Building explainable machine learning systems (Simon and Schuster)
Metrics
- Abstract views: 22
- PDF Downloads: 0
- Cited By: 0









下载: