Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Momentum transfer of 6Li atoms without subrecoil temperature based on Bloch oscillations

YU Shichuan ZHANG Liang FAN Jian YIN Mengjia DENG Shujin WU Haibin

Citation:

Momentum transfer of 6Li atoms without subrecoil temperature based on Bloch oscillations

YU Shichuan, ZHANG Liang, FAN Jian, YIN Mengjia, DENG Shujin, WU Haibin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Atom interferometer enables high-precision measurement of recoil frequency, which is crucial for determining the fine structure constant. Large momentum transfer (LMT) based on Bloch oscillations in atom interferometers can significantly enhance the measurement precision of the recoil frequency. Typically, applying Bloch oscillations to an atomic ensemble requires the atoms to be cooled within the first Brillouin zone. However, deep cooling of lithium atoms is challenging, making it diffcult to directly apply Bloch oscillations. Therefore, this paper develops an LMT technique based on Bloch oscillations in a relatively high-temperature ensemble of 6Li atoms. By constructing a deep potential optical lattice, the high-temperature atoms can be effciently loaded into the lattice. Subsequently, the optical lattice is adiabatically chirped to suppress interband transitions of the atoms and enable atoms to accelerate with the lattice. Although the effciency of a single Bloch oscillation decreases under the tight-binding approximation, this method simultaneously relaxes the temperature requirements of the LMT technique. Consequently, we achieve a large momentum transfer of 40 recoil momenta at 80 μK (far above the recoil temperature), with the number of transferred atoms reaching up to 5 × 106. Subsequent analysis of the atomic momentum spectrum before and after the Bloch oscillations revealed that, due to Doppler broadening, the atomic momentum shows a continuous distribution between the initial momentum and the target momentum, which limits the momentum transfer effciency. It was found that for a fixed optical lattice depth and pulse duration, the momentum distribution of atoms participating in the Bloch oscillations is independent of the number of oscillations. Furthermore, atoms with initial velocities aligned with the acceleration direction of the optical lattice are more easily accelerated. This LMT technique is expected to substantially enhance the measurement precision of the 6Li atomic recoil frequency, providing an important reference for the subsequent high-precision calibration of the fine structure constant using 6Li atom interferometers.
  • [1]

    Liu W, Boshier M G, Dhawan S, Van Dyck O, Egan P, Fei X, Perdekamp M G, Hughes V, Janousch M, Jungmann K, et al. 1999 Phys. Rev. Lett. 82 711

    [2]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009

    [3]

    Dirac P A M 1928 Proc. R. Soc. Lond. A. 117 610

    [4]

    Uzan J P 2011 Living Rev. Relativ. 14 1

    [5]

    Khorev V N, Shifrin V, Shubin S A, Park P G 2010 In CPEM 2010.(IEEE), pp 314-315

    [6]

    Shields J, Dziuba R, Layer H 2002 IEEE Trans. Instrum. Meas. 38 249

    [7]

    Jeffery A, Elmquist R E, Shields J Q, Lee L H, Cage M E, Shields S H, F D R 1998 Metrologia 35 83

    [8]

    Van Dyck R S, Schwinberg P B, Dehmelt H G 1987 Phys. Rev. Lett. 59 26

    [9]

    Hanneke D, Fogwell S, Gabrielse G 2008 Phys. Rev. Lett. 100 120801

    [10]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807

    [11]

    Williams E, Jones G, Ye S, Liu R, Sasaki H, Olsen P, Phillips W, Layer H 1989 IEEE Trans. Instrum. Meas. 38 233

    [12]

    Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L, Biraben F 2004 Phys. Rev. Lett. 92 253001

    [13]

    Cadoret M, de Mirandes E, Cladé P, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2008 Phys. Rev. Lett. 101 230801

    [14]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. Lett. 96 033001

    [15]

    Cladé P, Nez F, Biraben F, Guellati-Khélifa S 2019 C. R. Physique. 20 77

    [16]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [17]

    Zheng X, Sun Y, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203(in Chinses)[郑昕,孙羽,陈娇 娇,胡水明2018物理学报67 164203]

    [18]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005

    [19]

    Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner Č, Tino G M 2017 Nat. Commun. 8 15529

    [20]

    Mills I M, Mohr P J, Quinn T J, Taylor B N, Williams E R 2011 Phil. Trans. R. Soc. A. 369 3907

    [21]

    Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706

    [22]

    Taylor B N 1994 Metrologia 31 181

    [23]

    Wicht A, Hensley J M, Sarajlic E, Chu S 2002 Phys. Scr. 2002 82

    [24]

    McGuirk J M, Snadden M J, Kasevich M A 2000 Phys. Rev. Lett. 85 4498

    [25]

    Müller H, Chiow S w, Long Q, Herrmann S, Chu S 2008 Phys. Rev. Lett. 100 180405

    [26]

    Cladé P, Andia M, Guellati-Khélifa S 2017 Phys. Rev. A 95 063604

    [27]

    Morel L, Yao Z, Cladé P, Guellati-Khélifa S 2020 Nature 588 61

    [28]

    Rui Y, Zhang L, Li R, Liu X, Duan C, Liu P, Wu Y, Wu H 2023 Phys. Rev. Res. 5 023052

    [29]

    Cassella K, Copenhaver E, Estey B, Feng Y, Lai C, Müller H 2017 Phys. Rev. Lett. 118 233201

    [30]

    Grynberg G, Courtois J Y 1994 Europhys. Lett. 27 41

    [31]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408

    [32]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411

    [33]

    Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G, Nägerl H C 2008 Phys. Rev. Lett. 100 080404

    [34]

    Roati G, de Mirandes E, Ferlaino F, Ott H, Modugno G, Inguscio M 2004 Phys. Rev. Lett. 92 230402

    [35]

    Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001 Phys. Rev. Lett. 87 140402

    [36]

    Choi D I, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [37]

    Berg-Sørensen K, Mølmer K 1998 Phys. Rev. A 58 1480

    [38]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B 35 3095

    [39]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002

    [40]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. A 74 052109

    [41]

    Wannier G H 1937 Phys. Rev. 52 191

    [42]

    Cohen-Tannoudji C, Dupont-Roe J, Grynberg G 1998(John Wiley&Sons, Ltd), pp 67-163

  • [1] WANG Enlong, WANG Guochao, ZHU Lingxiao, BIAN Jintian, MO Xiaojuan, KONG Hui. Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer. Acta Physica Sinica, doi: 10.7498/aps.74.20241348
    [2] Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun. Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer. Acta Physica Sinica, doi: 10.7498/aps.71.20220147
    [3] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, doi: 10.7498/aps.71.20220071
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20211449
    [5] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, doi: 10.7498/aps.70.20210432
    [6] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, doi: 10.7498/aps.70.20211449
    [7] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, doi: 10.7498/aps.70.20201522
    [8] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, doi: 10.7498/aps.69.20191765
    [9] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, doi: 10.7498/aps.68.20190443
    [10] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, doi: 10.7498/aps.67.20181121
    [11] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, doi: 10.7498/aps.67.20180621
    [12] Fu Dong-Zhi, Jia Jun-Liang, Zhou Ying-Nan, Chen Dong-Xu, Gao Hong, Li Fu-Li, Zhang Pei. Realisation of orbital angular momentum sorter of photons based on sagnac interferometer. Acta Physica Sinica, doi: 10.7498/aps.64.130704
    [13] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, doi: 10.7498/aps.63.153701
    [14] Shang Ya-Na, Wang Dong, Yan Zhi-Hui, Wang Wen-Zhe, Jia Xiao-Jun, Peng Kun-Chi. Measurement of entangled state of light with non-degenerate frequency utilizing non-balanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, doi: 10.7498/aps.57.3514
    [15] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, doi: 10.7498/aps.57.808
    [16] Chai Lu, He Tie-Ying, Yang Sheng-Jie, Wang Qing-Yue, Zhang Zhi-Gang. Optimization of the parameters for a SPIDER. Acta Physica Sinica, doi: 10.7498/aps.53.114
    [17] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, doi: 10.7498/aps.46.1062
    [18] . Acta Physica Sinica, doi: 10.7498/aps.24.375
    [19] T. F. HU, C. WEI, C. S. CHANG. GE IR INTERFEREMETER. Acta Physica Sinica, doi: 10.7498/aps.20.1164
    [20] CHOU KUANG-CHAO, DAI YUEN-BEN. THE EFFECT OF RECOIL ON THE SCATTERING OF μ-MESONS BY LIGHT NUCLEI. Acta Physica Sinica, doi: 10.7498/aps.16.76
Metrics
  • Abstract views:  30
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2025
  • /

    返回文章
    返回