-
Self-trapping, a fundamental nonlinear phenomenon in which waves overcome diffusive spreading through system nonlinearities, is essential for understanding soliton formation and wave localization. Momentum lattices, constructed from the discrete momentum states of ultracold atoms to form synthetic dimensions, provide a versatile platform for investigating topological physics and localization phenomena. In this study, we experimentally investigate interaction-induced self-trapping in a one-dimensional momentum lattice by utilizing a Bose–Einstein condensate (BEC) of cesium atoms confined in a crossed optical dipole trap. Atomic interactions are tuned via a Feshbach resonance by adjusting the s-wave scattering length $a$. The system is initially prepared in a zero-momentum state and then quenched, with the subsequent dynamics probed using time-of-flight imaging. The results show that for weak interactions ($a\approx 3a_{0}$), the atoms undergo ballistic expansion. As the scattering length $a$ increases, diffusion is suppressed, leading to macroscopic self-trapping for $a\geq 600a_{0}$, where the atoms remain localized near the zero-momentum state. Numerical simulations based on the Gross–Pitaevskii equation agree well with the experimental results and yield a critical s-wave scattering length of $a\approx 591a_{0}$. Slight deviations observed at long evolution times arise from decoherence due to spatial separation and heating. In Bogoliubov theory, the repulsive interaction in real space manifests as a local attractive potential in momentum space. This energy shift suppresses tunneling between lattice sites, inducing macroscopic self-trapping. Our findings provide valuable insights for research on quantum many-body physics in momentum lattices.
-
Keywords:
- Bose-Einstein Condensate /
- Momentum Lattice /
- Feshbach Resonance /
- Selftrapping
-
[1] Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeliunas G, Lewenstein M 2014 Phys. Rev. Lett. 112 043001.
[2] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, Fallani L 2015 Science 349 1510.
[3] Stuhl B K, Lu H I, Aycock L M, Genkina D, Spielman I B 2015 Science 349 1514.
[4] Anisimovas E, Raciunas M, Sträter C, Eckardt A, Spielman I B, Juzeliunas G 2016 Phys. Rev. A 94 063632.
[5] An F A, Meier E J, Gadway B 2017 Nat. Commun. 8 325.
[6] An F A, Meier E J, Ang’ong’a J, Gadway B 2018 Phys. Rev. Lett. 120 040407.
[7] Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986.
[8] Xie D, Gou W, Xiao T, Gadway B, Yan B 2019 npj Quantum Inf. 5 55.
[9] Livi L F, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M, Fallani L 2016 Phys. Rev. Lett. 117 220401.
[10] Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Marti G E, Koller A P, Zhang X, Rey A M, Ye J 2017 Nature 542 66.
[11] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J, Rey A M 2016 Phys. Rev. Lett. 116 035301.
[12] Price H M, Zilberberg O, Ozawa T, Carusotto I, Goldman N 2015 Phys. Rev. Lett. 115 195303.
[13] Luo X, Zhou X, Li C F, Xu J S, Guo G C, Zhou Z W 2015 Nat. Commun. 6 7704.
[14] Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59.
[15] Gadway B 2015 Phys. Rev. A 92 043606.
[16] Meier E J, An F A, Gadway B 2016 Phys. Rev. A 93 051602.
[17] Xie D Z, Gou W, Xiao T, Gadway B, Yan B 2019 npj Quantum Information 5 55.
[18] Li Y Q, Wang Y F, Zhao H X, Du H Y, Zhang J H, Hu Y, Mei F, Xiao L T, Ma J, Jia S T 2023 Physical Review Research 5 L032035.
[19] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 6417.
[20] An F A, Meier E J, Gadway B 2017 Sci. Adv. 3 e1602685.
[21] Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, Yan B 2020 Phys. Rev. Lett. 124 070402.
[22] Liang Q, Xie D Z, Dong Z L, Li H W, Li H, Gadway B, Yi W, Yan B 2022 Phys. Rev. Lett. 129 070401.
[23] Wang Y F, Zhang J H, Li Y Q, Wu J Z, Liu W L, Mei F, Hu Y, Xiao L T, Ma J, Chin C, Jia S T 2022 Phys. Rev. Lett. 129 103401.
[24] Li Y Q, Du H Y, Wang Y F, Liang J J, Xiao L T, Yi W, Ma J, Jia S T 2023 Nat. Commun. 14 7560.
[25] An F A, Sundar B, Hou J P, Luo X W, Meier E J, Zhang C W, Hazzard K R A, Gadway B 2021 Phys. Rev. Lett. 127 130401.
[26] Wang Y F, Li Y Q, Wu J Z, Liu W L, Hu J Z, Ma J, Xiao L T, Jia S T 2021 Opt. Express 29 13960.
[27] Chen T, Xie D Z, Gadway B, Yan B 2021 arXiv:2103.14205v2.
[28] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225.
Metrics
- Abstract views: 12
- PDF Downloads: 0
- Cited By: 0









下载: